跳到主要內容

臺灣博碩士論文加值系統

(3.236.225.157) 您好!臺灣時間:2022/08/16 01:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:湯錦雲
研究生(外文):TANG.CHIN-YUN
論文名稱:國小五年級學童分數概念與運算錯誤類型之研究
論文名稱(外文):A Research of the Error Patterns of Concept and Computation of Fraction to the Fifth Grade Students of Elementary School
指導教授:蘇順德蘇順德引用關係
指導教授(外文):SU.SHUN-DER
學位類別:碩士
校院名稱:國立屏東師範學院
系所名稱:數理教育研究所
學門:教育學門
學類:普通科目教育學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:218
中文關鍵詞:分數概念分數運算錯誤類型
外文關鍵詞:concept of fractioncomputation of fractionerror patterns
相關次數:
  • 被引用被引用:200
  • 點閱點閱:2219
  • 評分評分:
  • 下載下載:396
  • 收藏至我的研究室書目清單書目收藏:18
兒童的分數學習困難,因此研究兒童在分數概念與運算的錯誤類型與錯誤原因,有助於教師有效的教學,提昇學生的學習成效。本研究的目的有二:1、瞭解國小五年級學童在分數概念與運算的錯誤類型;2、探討國小五年級學童在分數概念與運算發生錯誤的原因。
研究方法採筆紙測驗與晤談二種方式相互配合進行,藉由筆紙測驗調查學生在分數概念與運算的表現及犯錯情形。經由筆紙測驗的結果整理、歸納學生的錯誤情形,從中抽取具有代表性錯誤的學生接受晤談,深入瞭解學生解題的歷程、想法以及運算規則。綜合測驗與晤談的資料歸納成各種錯誤類型並探討學生可能犯錯的原因。本研究的研究樣本為高雄縣市五所國小五年級十二個班級,合計422位學童。研究工具有兩項自編工具,一項是「國小五年級教師對『國小五年級學生分數概念與運算錯誤類型』調查問卷」,另一項是「分數概念與運算測驗」。
本研究結果為:
1、分數概念的錯誤類型有:缺乏部份與全部的概念、缺乏等分概念、單位量指認錯誤、認為分數不是一個數、把數線「分割點」當成是「分隔數」、數線的標分數出現兩個或三個箭頭、把分數是「數線上的線段長」當成是「數線上的一點」、把數線的左端整數或單位段當分母、以讀取小數的方式讀取數線上的分數、數與量概念無法辨別、缺乏「分數是兩數相除的結果」的概念、缺乏「分數是一個比值」的概念、缺乏分數稠密性概念、缺乏等值分數概念、缺乏分數的約估能力。
2、整數加分數的錯誤類型有:「將被加數加上加數的分子成為答案的分子」、「運算符號的錯誤」、「將加數的分子減被加數成為答案的分子」、「計算錯誤」、「假分數化成帶分數的錯誤」、「將被加數分別加上加數的分子、分母成為答案的分子、分母」。
3、分數減法的錯誤類型有:「將減數的分子減被減數成為答案的分子」、「整數化成分數錯誤」、「運算符號的錯誤」、「借位的錯誤(向整數借1卻減2、向整數借1後沒有減1)」、「計算錯誤」、「假分數化成帶分數的錯誤」、「答案忘了寫上分母」、「將被減數減減數的分子當成答案的分子」、「減數的整數部份用減法計算,真分數部份用加法計算」、「被減數與減數倒置」、「將被減數分別減去減數的整數、分子、分母成為答案的整數、分子、分母」、「被減數的分子與減數的分子倒置計算」、「答案忘了寫上整數部份」、「減數的整數部份用減法計算,真分數部份不減」。
4、整數乘分數的錯誤類型有:「乘數的整數部份用乘法,真分數部份用加法」、「將被乘數分別成乘上乘數的整數、分子、分母成為答案的整數、分子、分母」、「被乘數、乘數都化成假分數後,分子乘分子,分母則不相乘」、「只做真分數部份的乘法,整數部份則不相乘」、「乘法用加法算則計算」、「帶分數化成假分數的錯誤」、「假分數化成帶分數的錯誤」、「計算錯誤」。
5、整數除整數的錯誤類型有:「沒有用分數作答」、「把商數當成分母,除數當成分子」、「把被除數當成分母」、「把商數當成答案,餘數則省略」、「計算錯誤」、「商數與除數倒置」、「假分數化成帶分數錯誤」、「把商數當成分子,餘數當成分母」、「答案沒寫上商數部分」。
6、分析分數概念與運算錯誤形成的原因有:不瞭解題意、過於依賴連續量的部份-全部模式、「分數是數線上的一點」與「分數是數線上的線段長」的概念混淆、將先前知識做錯誤的類推(十進位系統的類推、正整數的類推、帶分數的類推、小數的類推)、語言的影響(受分數從分母讀起影響、受直式中文順序影響)、缺乏先備知識(小數可以除以大數的概念、分數是一個數的概念、整數四則運算的技能)、概念間缺乏連結(整數的倍數概念與分數的倍數概念的連結、真分數倍的意義與乘法算式的連結、除法與分數的連結)、缺乏合理性的檢驗策略、學生的自我想法(文字或圖形的解讀、依據猜測作答、錯誤的簡易原則)。
根據研究結果加以討論,並提出下列建議提供教師在教學及教材編寫設計上之參考。
A Research of the Error Patterns of Concept and Computation of Fraction to the Fifth Grade Students of Elementary School
ABSTRACT
Some problems exist when children are learning the fractions. Thereafter to study the error patterns and the causes of concept and computation of fraction , is helpful to secure the teaching efficiency of the teachers and the learning achievement of the students. There are two purposes of this study: 1. To realize the error patterns of concept and computation of fraction happened to the fifth grade students of primary school. 2. To investigate the reasons why the fifth grade students made the mistakes in the concept and computation of fraction. This study was conducted in parallel through both paper-pencil test and interview as well to investigate the error patterns of concept and computation of fraction happened to the students. An interview as further test was administered to the students who had the representative error through the results of the paper-pencil test collected. To sum up the information gathered throughout the results of both paper-pencil test as well as the interview, we may have the chance to conclude the error patterns, and to investigate the reasons why the students committed the error. A total of 422 students in 12 classes were samples from five elementary schools of Kaohsiung Hsien and Kaohsiung City respectively. Two self-made instructions had been adopted in the study. One of them was “the questionnaire toward the teachers in the fifth grade classes of elementary school concerning ‘the error patterns of concept and computation of fraction to the fifth grade students of elementary school’ ”, and the other one was the “concept and computation of fraction test”.
The results revealed as follows:
1. The error patterns of conceptual fraction are : The shortage of concept in both complete and partial fractions, the shortage of concept of partition, the mis-identification of the volume of the units, the fraction is not a number, misunderstood the “separating point” as “separated number”, misunderstood the fraction as two or three numbers, misunderstood the fraction as two or three arrow heads appeared on the number line, taking “fraction is length of the section line” as “fraction is one of the point on the section line”, taking the integer in the left end of the number line or the unit line section as the denominator, taking the way of reading the decimal number as the way in reading the fraction on the number line, incapability to tell the number from the volume, insufficient concept in the fractional integration, insufficient concept in the equal fraction, and the insufficient sense in number, insufficient capability in estimating the value of the fraction, shortage of the sense of figures, etc.
2. The error patterns in the integer pluses fraction are : taking the sum of numerators of addend and addencand as the numerator of the answer, using the wrong computational signals, to subtract the addencand from the numerator of the addend as the numerator of the answer, the computation error , mis-conversion from the improper fraction to the mixed fraction, adding the numerator and denominator of the addend to the addencand as the numerator and denominator of the answer respectively, etc.
3. The error patterns of the fractional subtraction are : subtracting the minuend from the numerator of the subtrahend as the numerator of the answer, error in the conversion from integer to fraction, use the wrong computational signs, error in backward (backward of 1, but with the subtraction of 2; backward of 1 from the integer without substraction of 1), computation errors in substraction, mis-conversion from the improper fraction to the mixed fraction, forgot to put the denominator on, subtracting the numerator of the addend from the numerator of the addendhend as the numerator of the answer, to perform the subtraction with the integer part of the addend, while to perform the addition with the proper fraction, mis-placement between addend and addendhend, to subtract the integer, numerator and denominator of the addend from the addendhend as the integer, numerator and denominator of the resulted answer respectively, invert computation between the numerators of addend and addendhend, forgot to put on the integer, using subtraction with the computation in the integer part of the addend, whilst no subtraction with the proper fraction, etc.
4. The error patterns in the multiplication between integer and fraction are : Using the multiplication with the parts of the multipliers, whilst, using the addition with the parts of proper fractions, To multiple the integer, numerator, and denominator of the multiplier with the multiplicand as the integer, numerator, and denominator of the answer respectively, The multiplication between numerators, while no multiplication was made between the denominators after the conversion as improper fractions of both multiplier and multiplicand, Use multiplication only with proper fractions, while without integers, To compute the addition with multiplication, The errors in converting the mixed fraction to improper fraction, The errors in converting the improper fraction to mixed fraction, Faulty multiplication, etc.
5. The error patterns in dividing the integers are : Not using the fraction as the answer, To take the quotient as the denominator, and the divisor as the numerator, To take the dividend as the denominator, To take the quotient as the answer, and the balance to omit , Computation errors in division, Faulty placement between quotient and divisor, The error to convert the improper fraction to mixed fraction. To take the quotient as the numerator, and the balance as the denominator. The answer without quotient, etc.
6. The reasons to the formation of the analysis of concept and computation of fraction are : Without fully understanding the meaning of the problem, Too much reply on the portion of continuous part—whole model, Conceptual confusion happened between “fraction is one of the points on the number line.” and “fraction means the length of one section line on the number line”, Faulty comparison with prior knowledge (comparison of decimal system, comparison of positive integer, comparison of mixed fraction, comparison of decimal), Lingual affects (reading the fraction from the denominator, vertical sequence of Chinese characters), Insufficiency of prior knowledge (the concept that the smaller number can be divided by the larger number, fraction is one of the conceptual number, the computational skill with 4 rules of computation), The shortage of conceptual linkage between the concepts (the linkage between the multiple concept of the integer and the multiple concept of the fraction, the linkage between the true meaning of proper fractional multiple and multiplication, the linkage between division and fraction). The insufficiency of reasonable testing strategies. Self-thinking by the students themselves (the understanding of the characters or diagrams, to answer by guess, incorrectly concise principles). etc.
To discuss throughout the researching results as above, it is suggested to the teachers in their teaching manners and the composition of instructions.
國小五年級學童分數概念與運算錯誤類型之研究
目 錄
第一章 緒論
第一節 問題背景與研究動機 ……………………………………………1
第二節 研究目的 …………………………………………………………4
第三節 研究範圍與限制 …………………………………………………4
第四節 名詞界定 …………………………………………………………5
第二章 文獻探討
第一節 數學概念與運算學習的理論 ……………………………………6
第二節 兒童的分數概念發展與分數的意義……………………………11
第三節 分數概念與運算錯誤情形之研究………………………………15
第四節 分數概念與運算錯誤原因之探討………………………………23
第三章 研究架構與方法
第一節 研究設計…………………………………………………………27
第二節 研究樣本…………………………………………………………28
第三節 研究工具…………………………………………………………28
第四節 實施步驟…………………………………………………………33
第五節 資料處理與統計…………………………………………………37
第四章 結果與討論
第一節 學生在「分數概念與運算測驗」之錯誤情形…………………38
第二節 分數概念與運算的錯誤類型……………………………………46
第三節 分數概念與運算的錯誤原因……………………………………82
第四節 綜合討論 ………………………………………………………103
第五章 結論與建議
第一節 結論 ……………………………………………………………121
第二節 建議 ……………………………………………………………125
參考書目
一、中文部分 ……………………………………………………………128
二、英文部分 ……………………………………………………………130
圖 次
圖2-1 Markle & Tiemann(1970)概念學習的三種錯誤類型 ………7
圖2-2 圓錐形的概念模型 ………………………………………………7
圖2-3 Skemp(1980)概念形成的流程圖 ………………………………8
圖3-1 八十二年國小新課程的分數學習架構圖 ………………………30
圖3-2 實施過程的流程圖 ………………………………………………36
表 次
表3-1 研究樣本人數之基本資料 ………………………………………28
表3-2 八十二年國小新課程分數教材內容分析表 ……………………29
表3-3 「分數概念與運算測驗」內容分析之雙向細目表 ……………32
表4-1 「分數概念與運算測驗」犯錯的情形統計表 …………………40
表4-2 教師問卷結果與學生答題錯誤率對照表………………………44
附 錄 次
附錄一 國小五年級教師對『國小五年級學生數學科分數概念及運算
錯誤類型』調查問卷……………………………………………139
附錄二 分數概念與運算測驗之難度及鑑別度…………………………142
附錄三 「分數概念與運算測驗」各題錯誤答案或錯誤類型…………143
附錄四 面談原案…………………………………………………………160
測 驗 工 具
測驗工具一 ……………………………………………………………208
測驗工具二 ……………………………………………………………215
參考書目
一、中文部分
呂玉琴(民80):分數概念文獻探討。台北師院學報,4,頁573-606。
呂玉琴(民80b):國小學生的分數概念:1/2V.S.2/4。國民教育 31(11,12),頁10-15。
呂玉琴(民80):影響分數二分之一概念的因素。國民教育 31 (11,12),頁16-1。
呂玉琴(民82):影響分數二分之一概念的因素。國民教育,33,(5,6),頁2-11。
呂玉琴(民86):數與計算教材設計對分數概念的處理。載於台灣省國民學校研習會(編)國民小學數學科新課程概說(中年級)。
呂玉琴(民86):分數的四則運算與等值分數的設計。載於台灣省國民學校研習會(編)國民小學數學科新課程概說(高年級)。
林碧珍(民79):從圖形表徵與符號表徵之間的轉換探討國小學生的分數概念。新竹師院學報,4,頁295-347。
林碧珍(民74):數學概念的形成與學習。國教世紀,21,(1,2),頁1-4。
楊壬孝(民76):國中小學生分數概念的發展。行政院國家科學委員會專題研究計劃成果報告。(編號:NSC-76-0111-S003-10)。執行單位:國立台灣大學數學系。
楊壬孝(民77):國中小學生分數概念的發展。行政院國家科學委員會專題研究計劃成果報告。(編號:NSC-77-0111-S003-09A)。執行單位:國立台灣大學數學系。
楊壬孝(民78):國中小學生分數概念的發展。行政院國家科學委員會專題研究計劃成果報告。(編號:NSC-78-0111-S003-06A)。執行單位:國立台灣大學數學系。
郭丁熒譯(民81):追根究底談錯誤。國教之友,44(2),頁17-23。
吳德邦、吳淑惠譯(民80):小學的分數問題。 國教輔導,31(1),7768-7772。
楊瑞智(民79):四則運算的錯誤類型研究及教學上的應用。國教月刊,36(9,10),18-25。
蘇慧娟(民87):高雄地區國二學生方根及運算錯誤類型之分析研究。國立師範大學數學系碩士論文(未出版)。
劉天民(民82):高雄地區國一學生整數與四則運算錯誤類型之分析。國立高雄師範大學數學教育研究所碩士論文(未出版)。
陳麗玲(民82):國小數學學習障礙學生計算錯誤類型分析之研究。國立彰化師範大學特殊教育研究所碩士學位論文(未出版)。
黃馨緯(民84):國小高年級學童分數數線表示法瞭解之研究。國立台中師範學院初等教育研究所碩士論文(未出版)。
周柏達(民88):國民小學數學科新課程新課程實驗班與普通班分數學習表現之比較研究。台北市立師範學院國民教育研究所碩士論文(未出版)。
黃偉鵑(1993):小學生數學運算錯誤類型之研究。國立政治大學教育學系碩士論文(未出版)。
陳博文(1995):國小學童四則運算能力的研究。國立中正大學心理學系碩士論文(未出版)。
顏啟麟(民81):國小數學解題研究(1)。行政院國家科學委員會專題研究計劃成果報告。
呂溪木(1983):從國際科展看我國今後科學教育的發展方向。科學教育月刊,64期,13-19頁。
張鳳燕(1991):教導心理學微觀。師友月刊,284期,24-29頁。
鄭昭明(民82):認知心理學:理論與實踐。台北:桂冠圖書公司。
楊弢亮(1992):中學數學教學法通論。九章出版社。
周筱亭(民80):數學知識的建構與互動。研習資訊,8(2),35-40。
詹志禹(民77):國小學生分數概念的發展。行政院國家科學委員會專題研究計畫成果報告。執行單位:國立台灣師範大學數學系。
Booth.L.R.(1987)分數的學習困難(Booth專題演講,林麗惠整理)。科學教育月刊,100,頁7-15。
Hart,K.M.(民78a):數學學習的研究與應用。科學教育月刊,124,2-17。
Schwarzenberger(1984):錯誤的重要性。數學圈,21期,73-80。
二、英文部分
APU (1978-82), Mathematical Development, primary Survey report Nos 1, 2 and 3(HMSO; 1980, 1981, 1982).
Ausubel,D.P,&Novak,J.D.(1978).Education psycholgy:Acognitive view(2nded).New York:Holt,Rinehart,and Winston.
Baxter, P., &Dole, S.(1990)Research supplement working with the brain, not against it: Correction of systematic errors in subtraction. British Journal of Special Education,17(1),19-22.
Behr, M; Lesh, R, Post, T.&Silver, E. : Rational number concepts, Inlesh.r. & Landau, Bell,M. (EDS.) The acquistion of mathematical concepts and processes,New York : Acudanic press, 1983.
Behr, M; Post,T; Lesh, R; Representations in mathematics learning and problem solving In C. Janvier (Ed.) problems of representation in ihe teaching and earning of mathematics , 1987.
Behr,M. J.,Wachsmuth, I,.Post,T.R.& Lesh, R. (1984).Order and Equivalence of Rational Numbers: A Clinical Teaching Experiment. Journal for esearch in Mathematics Education , 323~341.
Behr, M. J., & Post, T. R. (1988). Teaching rational number and decimal concepts. In T. R. Post (Eds.), Teaching mathematics in grades K-8(pp.190-229). Boston, MA: Allyn and Bacon
Bergeron, J. C. & Herscovics, H.(1987). Unit Fractions of a Continuous Whole. The 11 th International Conference for the Psychology of Mathematics Education.
Bloosser, P.E.(1987). Science misconceptions research and some implications for the teaching of science to elementary school student.(ERIC Document Reproduction service No.ED282776).
Booth, L.R.(1984). Child-method in secondary mathematics. Educational studies in Mathematics,12,29-41.
Bouvier,A.(1987).The right to make mistake. For the Learning of mathematics,7(3),17-25.
Browne,J.S.,&Burton,R.R.(1978).”Diagnostic Models for Procedural
Bugsin Basic Mathematical Skill”,Cognitive Science,Vo1.2,No.2,
pp.155-192.
Bright, G. W., Behr. M. J., Post. T. R. & Wachsmuth, I (1988): Identifying Fractions on number lines. Journal for Research in Mathematics Education.215~232.
Clements M.A. and Lean G.A., Discrete fraction concepts and cognitive structure, P.M.E. XⅡ. PP.215-232, 1987.
Carpenter,T.D.,Corbitt,M.K.,Keper,H.S.,Lindquist,M.M.,&Reys,R.(1981).Results from the second mathematics assessment of National Assessment of Educational Progress.Reston, VA: National Council of Teachers of Mathematics.
Dickon, L., Brown, M., & Gibson, O.(1984). Children learning mathematics: A teacher’s guide to recent research. Oxford, Great Britain, England: Schools Council Publications.Teaching,Boston:Houghton Miffin Co.,1931.
Ewards,E.L.(1983).Minimum competencies-mathematics.Suggestion for instruction and assessment.Richmond,VA:Virginia Stste Department of Aducation,Division of Science and Elementary Administration.(ERIC Document Reprodution Service.NO.ED 251 322).
Figueras, O., Filloy. E. & Volderuoros, M.(1985).The Development of Spatial Imag-ination Abilities and Contextualisation Strategies: Models Based on the Teaching of Fractions; The Ninth International Conference for the Psychology ofMathematics Education .
Figueras, O. Filloy, E. & Volderuoros, M,(1987).some difficulties which obscurethe Appropriation of the Fraction concept. The 11th nternational Conference for the Psychology of Mathematics Education.
Figueras, O. (1989).Two Different Views of Fractions: Fractionating and Operating.The 13th International Conference for the Psychology of Mathematics Education.
Fosnot,C.T.(1996).Constructivism:Theory,perspectives,and practice.New York:Teachers College Press.
Gagne’,E.D.(1985).The cognitive psychology of school learning,Boston:Brown and Company.
Gagne’,R.M.(1985).The condition of learning(4 th ed.). New York:Holt Rinehart&Winston.
Galloway, P. J.(1975). Achievement and Attitude of Pupils Toward Initial Fractional Number Concepts at Various Ages from Six through Ten Years and of Decimals at Ages Eingt,Nine and Ten,(Doctoral dissertation)University of Michigan.
Ginsburg ,H.P.(1977)Childern’s arithmetic. Van Nostrand, New York.
Ginsburg ,H.P.(1977)Childern’s arithmetic :How they learn it and how yow teach it(2nd ed.)Austin,texas:PRO-ED.
Hart, K. : "Fraction",children''''s understanding of mathematics 11-16; Ed. John murray, great breation, chapter 5, pp.66-81, 1981.
Hart K.M:Children''''s understanding of mathematics 11-16; John murray, London,1980.
Hart, K. M. (1980). Secondary School Children''''s Understanding of
Mathematics Research Monograph (A report of the Mathematics component of the Concepts in Secondary Mathematics and Science Programs). Chelsea College, University of London.
Hart, K. (1981). Children''''s Understanding of Mathematics, 11 ~16. John Murray Ltd. London.
Hasemann, K, (1981). On Difficulties with Fractions. Educational Studies in Mathematics 71~87 .
Head,J.(1986).Research into “Alternative Frameworks”:promes and problems. Research In Technological Education,4(2),203-211.
Hiebert, J. & Tonnessen. L. H., (1978). Development of the Fraction Concept in Two Physical Contexts: An Exploratory Investigation. Journal for Researchin Mathematics Education , 374~378.
HieBert J. and Tonnessen L.H.: Development of the fraction concept in to physical contents an exploratory investigation ,1978.
Hunting, R, P. (1986). Rachel''''s Schemes for Constructing Fraction nowledge. Educational Studies in Mathematics , 49~66.
Hunting, R. P. & Sharpley, C. F., (1988). Fraction Knowledge in Preschool Children.Journal for Research in Mathematics Education , 175~179.
Jecks P. : Conceptual issues in the teaching and learning of fractions, Jurnal research of mathematics education 1981, pp.339-348.
Kathlen,T.T.(1987).Error Reduction Strategies for whole number operations in grade four.Doctoral Dissertation,University of Brigham Young,(1986).
Kerslake, D. "Fraction children’s strateyied and error" a report of the strategies and errors in secondary mathematics project; NFER, Great Britian, 1986
Kerslake, D. (1986 a). Fractions: Children''''s Strategies and Errors. NFER.
Kerslake, D. (1986b). Children''''s Perception of Fractions, The Tenth International Conference for the Psychology of Mathematics Education.
Kieren, T. E. (1976). Rational number on the number line. In L. Beatty, Mathematics for the Elementary School, Grade 5:Teacher’s Commentary, Part Ⅱ. Yale University. (ERIC Document Reproduction Service NO. ED 144 834)
Lankford,L.k.(1972).Final report:Some computational Strategies of seventh grade pupils ,Charlottesville,VA:University of Virginia.(ERIC Document Reproduction Service No.Ed 069 496).
Larson. C. N. (1980). Locating Proper Fractions on Number Lines: Effect of Length and Equivalence. School Science and Mathematics , 423~428.
Markle,S.M.&Tiemann,P.W.(1970).Really understanding concepts.In pursuit of the Jabberwocky.
Marriott, P.(1978): Fractions: Now You See Them, Now You Don’t. In Williams, D.(Ed.). Learning and Applying Mathematics, A. A. M. T. Melboune 196-203.
Muanguapoe, C. (1975). An Investigation of the Learning of the Initial Concept and Oral/Written Symbols for Fractional Numbers in Grades Three and our.(Doctoral dissertation) , University of Michigan.
Niemi, D.M.(1994).Assessing fifth-grade students’fraction understanding:A conceptual field method for fusing assessment and instruction. Unpublished doctoral dissertation, University of California, Los Angeles.
Novillis C.F. : An analysis of the fraction concept into a hierarchy of selected subconcepts and the testing of the hierarchical dependencies Journal for research in mathematics education , 1976, 7. 131-144.
Novillis, C. F, (1976). An Analysis of the Fraction Concept into a Hierarchy of Selected Subconcepts and the Testing of the Hierarchical Dependencies, Jour-nal of Research in Mathematics Education , 131~144.
Page,David(1969).Number lines,funtion,and Fundamental Topics.(Macmillan,New York,NY).
Painter,R.R.(1989).A comparsion of the procedural error patterns,scores,and other variables,of select ed groups of university and eight-grade studentd in Mississippi on a test involving arithmetic operation on fractions.(Doctoral dissertation,University of Southern Mississppi,1988).
Piaget, J. Inhelder, B. & Szeminska,A.: The child''''s conception of geomethmy New york: Basic books, 1960.
Piaget, J. Inhelder, B. & Szeminska, A, (1960). The Child''''s Conception of Geometry , London: Routledge and Kegan Paul.
Pines, A.L.(1980)A model for program development and evaluation: The formative role of summative evaluation and research in science education. Paper presented at the Annual conference of the International Congress for Individualized Industruction(12th,Windaor,Canada).
Post, T. R.(1988). Some notes on the nature of mathematics learning. In T. R. Post(Eds.), Teaching mathematics in grades K-8(pp.1-19).Boston, MA: Allyn and Bacon.
Radatz,H.(1979).Error analysis in mathematics education.Journal for Research in Mathematics Education,10,163-172.
Resnick, L. B.(1987).Learning in school and out, Educational Researcher,4,13-20.
Resnick, L. B.,&Ford,W.W.(1981).The psyohology of mathematics for instruction.New Jersey:Lawrence Erlbaum Associates.
Skemp, R.R.(1976).Relational and instrumental understanding. Mathematics Teaching,77,20-26.
Sutton,C.,and West,L.(1982).Investigating childer’s existing ideas about science.(ERIC Document Reprodution service No.ED230424).
Tatsuoka,K..K.(1984).Analysis of Error in Fraction Addition and Subtraction Problems.Final report MD:Illinois Univ., Urbaan.
Computer-Based Education Research Lab.(ERIC Document Reproduction Service.NO.ED 257 665).
Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes . (C. Michael, V. John-Steiner, S. Scribner, & E. Sorberman Ed.)Harvard college.
Wheatley, G. H. (1991). Constructivist perspectives on science and mathematics learning. Science Education , 75(1), 9-21.
Williams, H. B.(1975).A Sequential Introduction of Initial Fraction Concepts in Grade Two and Four and Remediation in Grade Six(Ed. S. Research Report).University of Michigan.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top