跳到主要內容

臺灣博碩士論文加值系統

(18.204.56.185) 您好!臺灣時間:2022/08/17 16:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:侯美玲
研究生(外文):Mei-Lin Hou
論文名稱:六年級兒童學習比值與比例概念之研究
論文名稱(外文):Sixth Grade Children''s Learning of the Ratio and Proportion Conception
指導教授:詹勳國詹勳國引用關係
指導教授(外文):Hsungrow Chan
學位類別:碩士
校院名稱:國立屏東師範學院
系所名稱:數理教育研究所
學門:教育學門
學類:普通科目教育學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:43
中文關鍵詞:比值比例國小數學數學學習
外文關鍵詞:RatioProportionChildren''s MathematicsMathematics Learning
相關次數:
  • 被引用被引用:17
  • 點閱點閱:1084
  • 評分評分:
  • 下載下載:166
  • 收藏至我的研究室書目清單書目收藏:8
中文摘要
許多科學概念建立在數學的比例概念上。中學生需要學習許多物理化學概念,例如溫度,速度,加速度,密度……等等,即使在日常生活、工作職場所也可能會運用比例概念。因此,有必要在國小階段,了解兒童比例概念的發展,以及教材對比例概念學習的影響。研究者在高雄縣市有效取樣135名小學六年級兒童,以面談和問卷的方式進行三階段研究分析。在比例、比值、比例尺三種的型式下,分析四個向度,包含中文用語、現實感、等值概念、直觀。
研究結果顯示:在中文用語方面,兒童對於「倍」字大多持有「擴大、大於一」的意涵,因此部分兒童會拒絕「0.7倍」的描述,儘管兒童已經在教材中學過前述用語,也歷經相關的考試。兒童在現實生活的量感方面,普遍表現不佳,特別是對重量;雖然兒童對於長度距離的掌握較佳,然而,由於數學課室裡遠離現實的啟蒙例,例如以大尺度的比例尺為教學案例,本研究發現,那樣的設計不利於中低成就兒童的現實感發展。在等值概念方面,兒童多能掌握具體數量比,低成就兒童在十倍數擴分的表現較好,其次是約分,最差的是「約分後再擴分」,此與現行教材的安排略有差異;對中、高成就兒童而言,基於熟練的運算技能,因此約分、擴分正確表現率相當一致;但是在大數字的表現則不佳,可能來自機械式理解,因此不具解題信心。在直觀方面,兒童學得後天直觀,認為「%」代表小於100份,因此認為150%不合理,顯然脫離真實生活中所使用的意義表徵。
此外,本研究印證「相對性思考」為比例運思基礎,樣本中超過85%的六年級兒童具備該能力。而根據研究發現,兒童在處理比例式、比值,往往要求給「單位」,特別是低成就兒童,有時甚至是中等成就者。比例式以非整數比方式出現(1/300:1),兒童作答的正確率會陡降,因此,研究者認為不適合以這種表達方式做為引入比值的教學,此與國內教科書的編寫主張不同;又比例式中的數值型態轉換仍是兒童學習障礙,例如:小數、分數的轉換。低成就兒童易受學習情境影響;超過70%的兒童會接受「70%元」,主要來自日常商業折扣的情境。
ABSTRACT
Partial science conception is built upon mathematics. Pupils in senior and junior high school would further learn temperature, velocity, acceleration and density, etc. Therefore it would be better for children to understand the mathematical concept of proportion and ratio in the primary school. In fact, talking about application, the ratio, proportion and percentage are worthy to be studied because of their usefulness in everyday and many occupations as well.
In this study, the objects of this investigate are 135 sixth grade children of Kaohsiung city and Kaohsiung county. By means of interviews and questionnaires, the researcher studies the ratio and proportion conception of them. There are four divisions to be the investigational framework; Chinese character, equivalent, reality, and intuition are included.
As the finding in the division of Chinese character, ‘倍’(it is somehow similar to ‘times’ in English), which always means bigger than ‘1’ in children’s mind. Therefore partial children would not accept the representation of ‘0.7倍’ illustrated in the mathematics textbooks before. Even they had learned it and passed examines in the mathematics classroom.
In sense of reality, children can sense ‘distance’ better than ‘weight’. And the sense developments of the middle level and low level children are deeply impressed by the generic sample. As investigated, the proportion of large scale, such as shown in maps, could not provide the advantages to the development of children’s reality sense.
In the equivalent, all children’s performance is good in the concrete context. Meanwhile, in the performance in purifying the proportion, there are discriminate differences among three levels of them. For the low level, to enlarge by 10 times easier than to purify, and to enlarge after purifying is the most difficult for them. The middle level and high level have skillful operation to solve the problem. But, in generally, big numbers would disturb the performance of both levels. The researcher suggests that children might learn the ratio and proportion conception with instrumental understanding but not by proportion reasoning. Chinese ancient mathematics, such as concrete operation strategies, might be further studied in detail for helping children deal with big numbers to overcome the basic fear.
In intuition division, children get the secondary intuition from the context of mathematics classroom that ‘%’ means less than 100 pieces. Therefore 150%, shown in daily life, is out of reason in children’s opinions. In the proportion problem, more than the half of objects, would eager to ask for units to make sure their reality sense. It often happens to the low level and sometimes to the middle level.
CONTENTS PAGE
LIST OF TABLES
LIST OF FIGURES
ABSTRACT- CHINESE
ABSTRACT- ENGLISH
CHAPTER 1.INTRODUCTION
1.1The Background and Importance of this Study
1.2The Purpose of this Study
CHAPTER 2.LITERATURE REVIEW
2.1 Children’s Mathematics
2.1.1 Children and Mathematics
2.1.2 The Mathematics Curriculum
2.1.3 The Curriculum Development
2.1.4 Problem Solving and Case-Base Reasoning
2.1.5 Ancient Mathematics and Children’s Learning
2.2 Children’s Mathematics Learning
2.2.1 The Piagetian Theory
2.2.2 The Intuition Theory
2.2.3 The Vygotskyan theory
2.3 The Researches of Ratio, Proportion Learning
CHAPTER 3. RESEARCH METHODS
3.1 Subjects and Research Design
3.2 The procedure and Analytical Approaches
3.2.1 The Exploratory Stage
3.2.2 The Pre-test Stage
3.2.2.1 Item Difficulty and Item Discrimination
3.2.2.2. Reliability
3.2.2.3 Validity
3.2.3 The Data Collection Stage
CHAPTER 4.RESULT AND DISCUSSION
4.1 Performance of Overall
4.2 Performances of different levels
4.3 Performance of different divisions
REFERENCES
APPENDICES
Appendix A.1 The questionnaire of Pre-Test
Appendix A.2 The Factor Analysis of Pre-Test
Appendix B.1 The formal questionnaire
Appendix B.2 The Factor Analysis of formal questionnaire
LIST OF TABLES
Table 1. Two—way specification table
Table 2. The corrections between Mathematics and Science teachers
Table 3. Test-retest reliability
Table 4. Internal consistency
Table 5. External consistency
LIST OF FIGURES
Fig. 1 Item Difficulty and Item Discrimination
Fig. 2 All performance
Fig. 3.1 Average performance
Fig. 3.2 Top performance
Fig. 3.3 Middle performance
Fig. 3.4 Bottom performance
Fig. 4.1 The Chinese Characters — Ratio performance
Fig. 4.2 Equivalence — Proportion performance
Fig. 4.3 Reality — Proportion Performance
Fig. 4.4 Reality— Scale Performance
Fig. 4.5 Reality — Ratio Performance
Fig. 4.6 Intuition — Proportion Performance
Fig. 4.7 Intuition — Ratio Performance
Reference
Booker, G. Bond, D. Briggs, J. and Davey, G., : 1997, Teaching Primary Mathematics, Sydney: Longman.
Black, T. R. (1999), Doing Quantitative Research in the Social Science, Sage Pub. London.
Bringuier, J. C. (1969), Conversations libre avec JEAN PIAGET by Jean-Claude Bringuier, transmitted by Lu, U. Y. (1994) Taiwan.
Brain G, (2001) Understanding Probabilistic Thinking: the legacy of Efraim Fischbein, Educational Studies in Mathematics, 45, 15-33.
Brown, M. (2001), “Influences on the teaching of number in England”, Principles and Practices in Arithmetic Teaching: Innovative approaches for the primary classroom. Edited by Anghileri J., Open University Press, USA.
Capon, N. and Kuhn, K.: 1979, Logical reasoning in the supermarket: Adult females’ use of a proportional strategy in an everyday context. Development psychology, 15, 4, 450-452
Chen, M. H. (1998), A Study on The Sixth Graders’ Ratio and Proportion Concepts, the unpublished master thesis of National Tai-Chung Teachers College, Taiwan.
Chen, Y. J. (1992), A Study on the Ratio Concept for Tai-Nan Teachers College’s Students, The academic Report of Tai-Nan Teachers College, 25, 319-343.
Chung J. (2001), The achievement assessment of the students under the new curriculum, Journal of Primary Education, National Academy for Educational Research, Taipei, Taiwan.
Curriculum Corporation, (1990), A National Statement on Mathematics for Australian School, Carlton , Victoria: Curriculum Corporation.
Fishbein, E. (1999); Psychology and Mathematics Education, Mathematics Thinking and Learning 1,47-58.
Fishbein, E. (1990), Intuition and information processing in mathematics activity, International Journal of Educational Research 14(1), 31-50
Fischbein, E., et al. (1985). The role of implicit models in multiplication and division, Journal for Research in Mathematics Education, 16, 3-7.
Freudenthal, H., (1968), Why to Teach Mathematics as to be Useful, Educational Studies in Mathematics 1, 3-8.
Ginsburg, H. P. and Allardice, B. S. (1999), Children ‘s Difficulties with School Mathematics, Everyday Cognition: Development in Social Context, Cambridge: Harvard University Press.
Gravemeijer K. (2001), Developmental Research, A course in Elementary Data Analysis As an Example, The Netherlands and Taiwan Conference on Common Sense in Mathematics Education, Taipei.
Greer, B. (2001), Understanding Probabilistic Think: the Legacy of Efraim Fishbein, Educational studies in Mathematics 45, 15-33.
Heuvel-Panhuizen, M. (2001), “Realistic mathematics education in the Netherlands”, Principles and Practices in Arithmetic Teaching: Innovative approaches for the primary classroom. Edited by Anghileri J., Open University Press, USA.
Horng, W. S. (2001), Intrinsic Cognitive Dimension of the HPM: Text versus Contexts The Netherlands and Taiwan Conference on Common Sense in Mathematics Education, Taipei.
Howe, A. C. (1996), Development of Science Concepts within a Vygotskian Framework, Science Education, 80(1), 35-51.
Hoyles, C. Noss, R. and Pozzi, S. (2001), Proportional Reasoning in Nursing Practice, Journal of Research in Mathematics Education, 32, 1, 4-27
Jackson, M. B. and Phillips, E. R. (1983) Vocabulary Instrument in Ratio and Proportion for Seventh Graders. Journal for research in Mathematics Education, 14, 4, 337 — 343
Keijer, R. and Terwel, J. (2001), ‘Audrey’s acquisition of fractions: a case study into the learning of formal mathematics’, Educational Studies in Mathematics 47, 53-73
Krathwohl, D. R., (1998), Methods of Education and Social Science Research: An Integrated Approach (2nd ed.). New York: Longman.
Lamon, S. J. (1993), Ratio and proportion: Connecting content and children’s thinking, Journal for research in Mathematics Education, 24, 1, 41-61
Lee, O. (1999). Equity implications based on the conceptions of science achievement in major reform documents. Review of Educational Research, 69, 1, 83-115
Leu, Y. C., (1993), An Investigation of Elementary School Teachers'' Knowledge in Fractions Teaching, the Unpublished Doctor Thesis of National Normal Teachers University, Taiwan
Lo, J.J., and Watanabe . T. (1997), Development ratio and proportion schemes: A story of fifth grader, Journal for research in Mathematics Education, 26, 2, 216—236.
Macnab, D. (2000), Raising Standard in Mathematics Education: Values, Vision, and TIMSS, Educational Studies in Mathematics 42, 61-80.
Marshall, C. Rossman G. B. (1999), Designing Qualitative Research (3rd ed.) Thousand Oaks, CA: Sage.
Mattews, M. (1994), Science Teaching: The Role of History and Philosophy of Science. New York: Routledge.
Mayer, R.E.: (1992), Thinking, problem solving, cognition, 2nd ed., New York: Freeman and company
Mcleod, D. B. and Adams, V. M. (1989), Affect and Mathematical Problem Solving: A New Perspective, New York: Springer-Verlag.
Mulligan J. T. and Mithchelmore, M.C. (1997) Young Children’s Intuitive Models of Multiplication and Division. Journal for Research in Mathematics Education, 28, 3,309-330.
Pirie, S.E.B. and Kieren, T. (1994), Beyond metaphor: Formalising in mathematical understandung within constructivist environments, For the Learning of Mathematics, 14, 1, 39-43.
Polya, G., (1990), How to Solve It, Melbourne: Penguin.
Quintero A. H., (1987), Helping Children Understand Ratios, Arithmetic Teacher, May, 17-21.
Schank, R. C. (1999), Dynamic Memory Revisited, UK: Cambridge Univ. Press.
Silver, E., (1994), On mathematical problem posing, For the Learning of Mathematics, 14,1,19-28.
Sovchik, R. J. (1996), Teaching Mathematics to Children, Harper Collins College Publishers,USA.
Streefland, L. (1982), Substracting fractions with different denominators, Educational Studies in Mathematics 13, 233-255
Tourniaire, F., and Pulos, S. (1985). Proportional reasoning: A review of the literature. Educational Studies in Mathematics, 16, 181-204.
Vygotsky, L. (1986), Though and language. Cambridge, MA: MIT Press.
Yang, C. L. (1998), A Study of Detecting Senior Elementary Student in Solving, the unpublished master thesis of National Chi-Yi University, Taiwan.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 郭重吉、許玫理(民82)。我國國民中學自然科學教師科學哲學觀點之調查研究。科學教育(彰師大),4,183-229。
2. 阮淑宜(民80)。幼兒空間概念之探討。國教輔導,30,3,7511-7516。
3. 郭重吉(民81)。從建構主義的觀點探討中小數理教育的改進。科學發展月刊,20(5),548-570。
4. 郭重吉(民79)。學生科學知識認知結構的評估與描述。彰化師範大學學報,1,279-319。
5. 郭重吉(民77)。從認知觀點探討自然科學的學習。教育學院學報,13,351-371。
6. 郭金美(民88)。國小學童天文學概念發展研究。國民教育研究學報,5,95-124。
7. 徐光台(民87)。皮亞傑對孔恩《結構》之影響。歐美研究,28(2),215-264。
8. 沈中偉(民83)。魏考斯基理論在認知策略上的應用。教學科技與媒體,2,23-31。
9. 朱則剛(民85)。建構主義知識論對教學研究的意義。教育研究雙月刊,49,39-45。
10. 朱則剛(民83)。建構主義知識論與情境認知的迷思-兼論其對認知心理學的意義。教學科技與媒體,2,3-14。
11. 郭重吉(民85)。建構論:科學哲學的省思。教育研究雙月刊,49,16-24。
12. 陳淑敏(民83)。Vygotsky 的心理發展理論和教育。屏東師院學報,7,119-143。
13. 張新仁(民82)。奧斯貝的學習理論與教學應用。教育研究雙月刊,23,31-51。
14. 張靜嚳(民84)。何謂建構主義。建構與教學,3。「Online」.Available:
15. 黃湘武、邱韻如、莊福泰(民84)。我國學生水平面及空間概念成長之研究。科學教育學刊,3,2,167-188。