跳到主要內容

臺灣博碩士論文加值系統

(44.210.21.70) 您好!臺灣時間:2022/08/11 15:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:葉文正
論文名稱:FRP補強鋼筋混凝土樑剪力行為之探討
論文名稱(外文):The Model for the Mechanical Behaviors of FRP Strengthened Reinforced Concrete Beam
指導教授:盧 俊 愷
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:土木工程系碩士班
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:71
中文關鍵詞:FRP內涵時間塑性理論鋼筋混凝土樑剪力補強
外文關鍵詞:FRPendochronic modelreinforced beamstrengthen
相關次數:
  • 被引用被引用:2
  • 點閱點閱:317
  • 評分評分:
  • 下載下載:82
  • 收藏至我的研究室書目清單書目收藏:2
纖維強化複合材料板(FRP)具強度高、材質輕、抗腐蝕、剪裁容易及施工簡易等特性,已經廣泛地應用於航太、汽車工業上。近來亦被應用於混凝土結構物補強,使得FRP補強成為土木工程發展的新趨勢。
本文從力學觀點出發,在平衡條件及相容關係方面,以桁架模式及壓力場理論為基礎,在混凝土組成律方面,分別依據Lu與Wu所建立之混凝土內涵時間塑性模式及Vecchio與Collins提出之混凝土軟化應力模式為混凝土組成律,探討將FRP貼附於鋼筋混凝土樑之側面,對鋼筋混凝土樑剪力補強之力學行為,並考慮不同抗壓強度混凝土材料、不同厚度、不同角度、不同貼片方式FRP補強,對鋼筋混凝土樑剪力強度之影響,以作為鋼筋混凝土樑剪力補強設計之參考。並以實驗數據驗證之,結果顯示本文所建立之理論模式描述效果良好。

Fiber reinforced plate (FRP) possess the advantages of high strength, light-weight, high corrosive resistance, etc. Recently, FRP materials have been widely used for the strengthening and rehabilitation of concrete structures. Present paper is based on truss model and compression field theory in equilibrium and compatibility. Present paper will develop two kinds of theoretical models to describe the shear behavior of the reinforced beam strengthened by FRP according two different constitutive laws of concrete. The one is endrochronic constitutive equations for concrete developed by Lu and Wu and the other is softened stress-strain relationship of concrete suggested by Vecchio and Collins. Also, several different conditions are discussed. The theoretical results are compared with experimental data. The results are satisfactory.

中文摘要 ……………………………………………………….Ⅰ
英文摘要 ……………………………………………………….Ⅱ
誌 謝 ……………………………………………………….…Ⅲ
目 錄 ……………………………………………………….…Ⅳ
圖表索引 ……………………………………………………….Ⅵ
第1章 緒論 ……………………………………….…………..1
1.1 前言 ……………………………………………………1
1.2 研究目的 ………………………………………………4
1.3 研究方法 ………………………………………………5
第2章 文獻回顧 ……………………………………………...7
2.1 內涵時間塑性理論之文獻回顧 ………………………7
2.2 桁架模式理論之文獻回顧………………………..……9
2.2.1 桁架模式與支柱-束制模式 …………………...9
2.2.2 平衡(塑性)桁架模式……………………………. 10
2.2.3 莫爾諧和桁架模式……………………………….11
2.3 壓力場理論之文獻回顧………………………...….….13
2.3.1 Elfgren壓應力場理論……………………………13
2.3.2 Collins’s壓力場理論……………………………..14
2.4 FRP補強之鋼筋混凝土樑……………………………..15
第3章 FRP補強鋼筋混凝土樑剪力行為之理論背景……….19
3.1 混凝土內涵時間塑性理論 ……………………………19
3.1.1 等向部份之行為反應 …………………………...19
3.1.2 偏向部份之行為反應 ………………………...…21
3.2 樑之剪力分析 ………………………………………....23
3.2.1 無剪力筋鋼筋混凝土樑之剪力強度…………….24
3.2.2 剪力筋之作用…………………………………….24
3.2.3 FRP於剪力強度之影響………………………….25
第4章 FRP於鋼筋混凝土樑剪力補強理論模式之應用………33
4.1 鋼筋混凝土樑剪力補強理論模式..……………………33
4.1.1 平衡條件……………………………………….…..34
4.1.2. 變形諧和條件………………………………….….36
4.1.3. 材料組成律………………………………………..37
4.2 鋼筋混凝土樑剪力補強理論模式之分析流程………. 38
4.2.1. 鋼筋混凝土樑剪力補強理論模式(I)………….….38
4.2.2. 鋼筋混凝土樑剪力補強理論模式(II)…………….40
4.3 結果討論………………………………………………..41
第5章 結論及建議 …………………………………………..45
5.1 結論 ………………………………………………..…..45
5.2 建議 ……………………………………………….…...46
參考文獻 ………………………………………………………...62
符號索引 ………………………………………………………...70
作者簡介
圖表索引
圖1-1 FRP補強實驗加載示意圖….…………..……..…...……..56
圖2-1應力元素圖….………………….…………………...…….57
圖4-1 FRP補強鋼筋混凝土樑之自由體圖………………...…...58
圖4-2 FRP應變莫爾圓圖…………………………………...…...59
圖4-3 FRP面狀貼片補強示意圖………………………………..60
圖4-4 FRP U型面狀貼片補強示意圖……………………...…...61
表4-1等向反應部份材料常數 …………………………………48
表4-2偏向反應部份材料常數 ……………………………...….49
表4-3 A組與B組試體資料………………..…………………….50
表4-4 A組與B組理論模式預測結果…….…………………….51
表4-5 C組試體資料……….………………..……………………52
表4-6 C組理論模式預測結果…….……………………………..53
表4-7 D組與E組試體資料………………..…………………….54
表4-8 D組與E組理論模式預測結果…….…………………….55

1. 王智銘,“玻璃纖維高分子強化貼片應用在鋼筋混凝土樑之試驗研究”,碩士論文,逢甲大學土木及水利工程研究所 (1996)
2. 王仲宇,凌烽生,宋明昌,“含裂縫鋼筋混凝土樑之FRP貼片補強 I:實驗探討’’,中國土木水利工程期刊,第十二卷,第一期,Vol. 12,No. 1,pp. 113-122 (2000)
3. 王仲宇,凌烽生,“含裂縫鋼筋混凝土樑之FRP貼片補強II:剝離破壞的預估模式’’,中國土木水利工程期刊,第十二卷,第二期,Vol. 12,No. 2,pp. 277-289 (2000)
4. 李秉乾,李宗澤,吳岱佑,廖為忠,林慶昌,“纖維強化複合材料補強鋼筋混凝土樑之應用與研究”,第四屆結構工程研討會,pp. 2117-2124 (1998)
5. 李有豐,彭添富,施邦築,朱國棟,邱佑宗,鄭育祥,“碳纖維強化高分子複合材料補強簡支RC樑之有效方法介紹” , 第四屆結構工程研討會,pp. 2125-2132 (1998)
6. 林草英,蔡耀德,“鋼筋混凝土樑以碳纖維複合物作剪力補強之結構行為’’,中國土木水利工程學刊,第十二卷,第二期,Vol. 12,No. 2,pp. 225-232,(2000)
7. 林草英,洪建銘,“碳纖維CFC在鋼筋混凝土樑構件之應用”,第四屆結構工程研討會,pp. 2101-2108 (1998)
8. 林秀龍,“三明治板於鋼筋混凝土樑之補強”,碩士論文,中央大學土木工程研究所 (2000)
9. 吳岱佑,“混凝土樑應用玻璃纖維加勁複材布補強之研究”,碩士論文,逢甲大學土木及水利工程研究所 (2000)
10. 徐明宏,“玻璃纖維強化高分子貼片補強鋼筋混凝土樑定量分析”,碩士論文,逢甲大學土木及水利工程研究所 (1996)
11. 陳建宏,“以複合材料補強鋼筋混凝土之探討與應用”,碩士論文,中原大學土木工程研究所 (2001)
12. 盧俊愷,陳成,“GFRP圍束混凝土柱承受軸向載重之力學行為模式”,中國土木水利工程學刊,Vol. 14,No. 2,pp. 175-180 (2002)
13. 921集集大地震專輯,財團法人中華顧問工程司,民國88年11月
14. ACI Committee 318, Building Code Requirements for RC, ACI 318-95, American Concrete Institute, Detroit, MI, (1995)
15. Al-Sulaimani, G. J., Sharif, A., Basunbul, I. A., Baluch, M. H., and Ghaleb, B. N., “Shear Repair for Reinforced Concrete by Fiberglass Plate Bonding,” ACI Structural Journal, Vol. 91, No. 3, July-August, pp. 458-464 (1994)
16. Arduini, M., Tommaso, A. D., and Nanni, A., “Brittle Failure in FRP Plate and Sheet Bonded Beams,” ACI Structural Journal, Vol. 94, No. 4, July-August, pp. 363-370 (1997)
17. Barnes, R.A., Baglin, P.S., Mays, G.C., and Subedi, N.K., “External stell plate systems for the shear strengthening of reinforced concrete beams,” Engineering Structures Vol. 23, pp. 1162-1176 (2001)
18. Bazant, Z. P., and Bhat P. D., “Endochronic Theory of Inelasticity and Failure of Concrete,” Journal of Engineering Mechanics Division, ASCE, Vol. 102, No. 4, pp. 701 (1976)
19. Chaallal, O., Nollet, M.J., and Perraton, D. “Shear Strengthening of RC Beams By Externally Bonded Side CFRP Strips,” Journal of Composites for Construction Vol. 2, No. 2, May, pp. 111-113 (1998)
20. Chajes, M. J., Januszka, T. F., Mertz, D. R.,. Thomson, T. A, Jr., and Finch, W. W., Jr., “Shear Strengthening of Reinforced Concrete Beams Using Externally Applied Composite Fabrics,” ACI Structural Journal, Vol. 92, No. 3, May-June, pp. 295-302 (1995)
21. Collins, M. P.. “Torque —Twist Characteristics of Reinforced Concrete Beams,” Inelasticity and Non-Linearity in Structural Concrete, Study No. 8, University of Waterloo Press, pp. 211-231 (1973)
22. Collins, M. P., and Mitchell, D., Prestressed Concrete Structure. Prentice Hall Inc, Ch 7, pp. 309-379 (1991)
23. Colotti, V., and Spadea, G., “Shear Strength of RC Beams Strengthed with Bonded Stell or FRP Plates,” Journal of Structural Engineering, Vol. 127, No. 4, April, pp. 367-373 (2001)
24. Elfgren, L. “Reinforced Concrete Beams Loaded in Combined Torsion, Bending and shear,” Publication 71:3, Division of Concrete Structures, Chalmers University of Technology, Goteborg, Sweden, 249 pp. (1972)
25. Gendron, G., Picard, A., and Guerin, M.-C., “A theoretical study on shear strengthening of reinforced concrete beams using composite plates,’’ Composite Structures Vol. 45, pp. 303-309 (1999)
26. Hsu, T. T. C. Unified Theory of Reinforced Concrete, CRC Press, Inc., Boca Raton, FL, 336 pp. (1993)
27. Hsu, T. T. C., “Toward A Unified Nomenclature For Reinforced- Concrete Theory,” Journal of Structural Engineering, Vol. 122, No. 3, March, pp. 275-283 (1996)
28. Khalifa, A., Gold, W. J., Nanni, A, and Aziz., A. M. I., “Contribution of Externally Bonded FRP to Shear Capacity of RC Flexural Members,’’ Journal of Composites for Construction, Vol. 2, No. 4, November, pp. 195-203 (1998)
29. Khalifa, A., and Nanni, A., “Improving shear capacity of existing RC T-section beams using CFRP composites,” Cement & Concrete Composites, Vol. 22, pp. 165-174 (2000)
30. Lampert, P. and Thurlimann, B. “Torsion Tests of Reinforced Concrete Beams ( Torsionsversuche an Stahlbetonbalken),” Bericht No. 6506-2, Institute fur Baustatik, ETH, Zurich, Switzerland, 101 pp. (1968).
31. Li, A., Assih, J., and Delmas, Y., “Shear Strengthening of RC Beams with Externally Bonded GFRP Sheets,” Journal of Structural Engineering, Vol. 127, No. 4, April, pp. 374-380 (2001)
32. Li, A., Diagana, C., and Delmas, Y., “CFRP contribution to shear capacity of strengthened RC beams,” Engineering Structures, Vol. 23, pp. 1212-1220 (2001)
33. Lu, J. K. and Wu, W. H., “The Application of Soften Truss Model with Plastic Approach for Reinforced Concrete Beams,” Structural Engineering and Mechanics, Vol. 11, No. 4, pp. 393-406 (2001)
34. Malek, A.M., and Saadatmanesh, H., “Analytical Study of Reinforced Concrete Beams Strengthened with Web-Bonded Fiber Reinforced Plastics Plates or Fabrics,’’ ACI Structural Journal, V. 95, No. 3, May —June, pp. 343-352 (1998)
35. Malek, A. M., and Saadatmanesh, H., “Ultimate Shear Capacity of Reinforced Concrete Beams Strengthened with Web-Bonded Fiber-Reinforced Plastic Plates,’’ ACI Structural Journal, V. 95, No. 4, July-August, pp. 391-399 (1998)
36. Mallick, P. K. Fiber — Reinforced Composites Materials, Manufacturing, and Design, Second Edition, Revised and Expanded, Ch 3-2 pp. 117-147 (1993)
37. Nielsen, M. P. “Om Forskydningsarmering i Jernbetonbjaelker,” (On Shear Reinforcement in Reinforced Concrete Beams ), Bygningsstatiske Meddelelser, Copenhagan, Denmark, Vol. 38, No. 2, pp. 33-58 (1967)
38. Norris, T., Saadatamanesh, H., and Ehsani, M. R., “Shear and Flexural Strengthening of R/C Beams with Carbon Fiber Sheets,” Journal of Structural Engineering, Vol. 123, No. 7, July, pp. 903-911 (1997)
39. Sharif,A., Al-Sulaimani, G. J., Basunbul, I. A., Baluch, M. H., and Ghaleb, B. N., “Strengthening of Initially Loaded Reinforced Concrete Beams Using FRP Plates,” ACI Structural Journal, Vol. 91, No. 2, March-April, pp. 160-168 (1994)
40. Taljsten, B., and Elfgren, L., “Strengthening concrete beams for shear using CFRP-materials: evaluation of different applicaton methods,” Composites: Part B, Vol. 31, pp. 87-96 (2000)
41. Triantafillou, T. C ., “Shear Strengthening of Reinforced Concrete Beams Using Epoxy-Bonded FRP Composites,” ACI Structural Journal, V. 95, No. 2, March-April, pp. 106-115 (1998)
42. Valanis, K. C., “A Theory of Visco-Plasticity Without a Yield Surface,” Archive of Mechanics, Vol. 23, pp. 517 (1971)
43. Valanis, K. C., “Fundamental Consequences of a New intrinsic Time Measure. Plasticity as a Limit of the Endochronic Theory,” Archive of Mechanics, Vol. 32, pp. 171 (1980)
44. Vecchio, F. J., and Collins, M. P., “The Modified Compression-Field Theory for Reinforced Concrete Elements Subjected to Shear,” ACI Structural Journal, March-April, pp. 219-231 (1986)
45. Wu, H. C., and Aboutorabi, M. R., “Endochronic Modeling of Coupled Volmnetric-Deviatoric behavior of porous and Granular Material,” International Journal of Plasticity, Vol. 4, pp. 127-163 (1988)

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top