跳到主要內容

臺灣博碩士論文加值系統

(44.210.21.70) 您好!臺灣時間:2022/08/11 16:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:胡永國
論文名稱:應用類神經網路推估地下水位洩降所致地層沉陷之研究
論文名稱(外文):Estimation of Consolidation Settlement Caused by Groundwater Drawdown Using Artificial Neural Networks
指導教授:柯亭帆柯亭帆引用關係
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:土木工程系碩士班
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:99
中文關鍵詞:高雄捷運倒傳遞類神經網路洩降地下水位壓密沉陷
外文關鍵詞:Kaohsiung mass rapid transitback-propagation neural networksgroundwater drawdownconsolidation settlement
相關次數:
  • 被引用被引用:12
  • 點閱點閱:621
  • 評分評分:
  • 下載下載:143
  • 收藏至我的研究室書目清單書目收藏:1
防災科技是目前土木工程相關探討的一項熱門領域,譬如有關因在施工時瞬間或長期抽取地下水所引起地層下陷,並造成鄰近建物破壞的災害即是其中一項重要研究課題。本研究即旨在針對已於2001年開工的高雄捷運主要的紅線路段,利用類神經網路中的倒傳遞網路方法,將現有地層鑽探資料中所得之土層孔隙比、洩降水位高度以及總體單位重做為輸入參數,分別以三種不同組合模式,來建立各參數與地表壓密沉陷量之相對最佳模式,進而推算出捷運紅線沿線從地表至施工基礎開挖面( 地表下17至20公尺 )所可能產生之沉陷量。所得部份結果也與前人理論計算值(地下水位下降1至3公尺)作比較,並以統計t 檢定來增加推估模式之信賴度。由整個推估結果與圖表分析,可清楚看出高雄捷運紅線各路段因水位洩降所造成地層下陷量之分佈,這些資訊應可作為實際防治因施工所造成潛在災害之評估參考。
In recent, hazard prevention technology is become one of popular research areas in the field of civil engineering . For instance, the consolidation settlement caused by transient or long-term groundwater overdraft is a very important issue, which must be considered during the construction of engineering projects, as it may cause serious damage on the structures in the neighborhood of construction region. Therefore, the purpose of this study is by using the method of back-propagation neural networks to develop a model for estimating the consolidation settlements from ground level to the excavation surfaces ( underground 17m to 20m ) along main Red line sections of Kaohsiung Mass Rapid Transit. The available on-site boring test data including soil void ratio, groundwater drawdown and gross unit weight are taken as the input parameters, and three combinations of these inputs are used to obtain a relatively better estimating model. The estimated settlements and theoretical results ( under ground 1m to 3m ), with statistical t-test, are compared to enhance the reliability of neural networks models. The distribution of surface settlements along the Red line sections can be seen clearly form the overall estimating results and post-plots. In practice, the information may provide a useful reference for evaluating the potential hazardous regions due to construction.
目錄
中文摘要………………………………………………………….Ⅰ
英文摘要………………………………………………………….Ⅱ
誌謝……………………………………………………………….Ⅲ
目錄……………………………………………………………….Ⅳ
圖索引…………………………………………………………….Ⅵ
表索引…………………………………………………………….Ⅷ
第一章 緒論…………………………………………………...1
1.1研究動機與目的……………………………………….1
1.2文獻回顧……………………………………………….3
1.3 研究內容安排…………………………………………6
第二章 類神經網路基本原理………………………….10
2.1 類神經網路發展緣由………………………………..10
2.2 類神經網路基本模型………………………………..11
2.3 類神經網路模式分類………………………………..14
2.4 倒傳遞類神經網路…………………………………..16
第三章 地表壓密沉陷理論與現地概況……………23
3.1 壓密理論概述……………………………………….23
3.2 高雄捷運紅線土層概況…………………………….26
3.3 抽水引致淺層沉陷的評估………………………….28
第四章 建立模式與地表沉陷量之推估……………31
4.1 網路訓練資料處理……………………………………..31
4.2 不同網路模式之比較…………………………………..32
4.3 地表沉陷量之推估……………………………………..36
第五章 結論與建議……………………………………….67
參考文獻………………………………………………………71
符號索引………………………………………………………79
參考文獻
1. 杜富麗、呂志宗,(1992), “抽水所引致的壓密沉陷問題之研究”,中華大學土木工程研究所碩士論文。
2. 林淑真、李宗仰,(1996), “神經元傳輸函數在水文時序建模之分析”,第八屆水利工程研討會,pp. 211-218。
3. 洪士林、高清雲、謝明富,(2001), “應用倒傳遞類神經網路模擬結構非線性遲滯動力行為”,中國土木水利工程學刊,Vol. 13, pp. 567-583。
4. 陳 憲、黃尹龍、吳青俊、蔡曜隆,(2001), “應用倒傳遞與反傳遞類神經網路模式於洪流量之預測”,台灣水利,Vol. 49, pp. 65-77。
5. 高雄市政府捷運工程局籌備處,(1991), “高雄都會區大眾捷運系統紅線主要路段地質工作地質調查報告書”,中鼎工程顧問股份有限公司。
6. 張國鎮,(2001), “公路橋梁編碼及類神經網路橋梁震害預測
系統簡介”,土木技術,Vol. 37, pp. 82-94。
7. 張光仁、林美聆,(1999), “台西麥寮地區多井抽水引致區域性地層下陷之分層分析”,國立臺灣大學土木工程研究所碩士論文。
8. 曾益華、葉怡成,(2001), “以類神經網路為基礎之預測系統之研究”,中華大學土木工程研究所碩士論文。
9. 葉怡成,(1993), "類神經網路模式應用與實作",儒林圖書有 限公司。
10. 黃彥士、蔡光榮、王弘祐,(2001), “高雄捷運系統紅線路段潛在地質災害之調查分析研究”,國立屏東科技大學土木工程研究所碩士論文。
11. 楊永康、陳紹魁、蘇鼎均,(1999), “基礎深開挖鄰房保護評估及安全監測成果案例探討”,地工技術,Vol. 75, pp. 29-40。
12. 賴新龍、李德河、許琦,(1998), “高雄都會區深開挖引致地表沉陷之研究”,國立成功大學土木工程研究所碩士論文。
13. Adeli, H. (2001), "Neural networks in civil engineering: 1989-2000," Computer-Aided Civil and Infrastructure Engineering, Vol. 16, pp. 126-142.
14. Adeli, H. and Wu, M. (1998), "Regularization neural network for construction cost estimation," Journal of Construction Engineering and Management, ASCE, Vol. 124, No. 1, pp. 18-24.
15. Arslan, A. and Ince, R. (1996), "Neural network-based design of edge-supported reinforced concrete slabs," Structural Engineering Review, Vol. 8, No. 4, pp. 329-335.
16. Bodri, L. (2000), "Prediction of extreme precipitation using a neural network: Application to summer flood occurrence in Moravia," Advances in Engineering Software, Vol. 31, pp. 311-321.
17. Das.B.M (1998), "Advance Soil Mechanics ," 2nd ed., Taylor & Francis, pp. 399~453.
18. Das.B.M (1992), "Principles of Soil Dynamics, " PWS-KENT
pub. co, pp. 301-320, pp. 397-455.
19. Flood, I. and Kartam, N. (1994), "Neural networks in civil engineering. I: Principles and understanding," Journal of
Computing in Civil Engineering, ASCE, Vol. 8, No. 2, pp. 131-148.
20. Flood, I. and Kartam, N. (1994), "Neural networks in civil engineering. II: Systems and application," Journal of Computing in Civil Engineering, ASCE, Vol. 8, No. 2, pp. 149-162.
21. Flood, I., Muszynski, L.C. and Nandy, S. (1999), "Estimating the performance of externally reinforced concrete beams using neural networks," Artificial Intelligence Applications in Civil and Structural Engineering, B. Kumar and B.H.V. Topping (Editors), Civil-Comp Press, Edinburgh, Scotland, pp. 103-108.
22. Goh, A.T.C., Wong, K.S. and Broms, B.B. (1995), "Multivariate modelling of FEM date using neural networks," Developments in Neural Networks and Evolutionary Computing for Civil and Structural Engineering, B.H.V.
Topping (Editor), Civil-Comp Press, Edinburgh, UK, pp. 59-64.
23. Hagan, M.T., Demuth, H.B. and Beale, M. (1995), "Neural network design," PWS Publishing Company, Boston, USA.
24. Hertz, J., Krogh A. and Palmer, R.G. (1991), "Introduction
to the theory of neural computing," Addison—Wesley, Redwood City, Calif., U.S.A.
25. Hirose, Y., Yamashita, K. and Hijiya, S. (1991), "Back-propagation algorithm which varies the number of hidden units," Neural Networks, Vol. 4, pp. 61-66.
26. Hung, S.L. and Jan, J.C. (1999), "MS-CMAC neural network learning model in structural engineering," Journal of Computing in Civil Engineering, Vol. 13, No. 1, pp. 1-11.
27. Kartam, N., Flood, I. and Garrett, J. (1997), "Artificial neural networks for Civil engineers: Fundamentals and applications," ASCE publications, New York, USA.
28. Kerh, T. and Yee, Y.C. (2000), "Analysis of a deformed
three-dimensional culvert structure using neural networks," Advances in Engineering Software, Vol. 31, pp. 367-375.
29. Lin, C.T. and Lee, C.S.G. (1996), "Neural fuzzy system," Prentice Hall, Singapore.
30. Lou, Z. and Manjriker G.(1999), “ Fore Casting of Pavement Crack Condition Using A Neural Network Model ,” Linear and nonlinear crack growth using boundary elements.
31. Plutowski, M., Cottrell, G. and White, H. (1996), "Experience with selecting exemplars from clean data," Neural Networks, Vol. 9, No. 2, pp. 273-294.
32. Rafiq, M.Y., Bugmann, G. and Easterbrook, D.J. (1999), "Guidelines for designing neural networks for civil engineering applications," Artificial Intelligence Applications in Civil and Structural Engineering, B. Kumar and B.H.V. Topping (Editors), Civil-Comp Press, Edinburgh, Scotland, pp. 109-115.
33. Sanad A. and Saka, M.P. (1999), "Prediction of ultimate shear strength of reinforced concrete deep beams using neural
networks," Artificial Intelligence Applications in Civil and Structural Engineering, B. Kumar and B.H.V. Topping (Editors), Civil-Comp Press, Edinburgh, Scotland, pp. 147-157.
34. Sinha, S.K. and McKim, R.A. (2000), "Artificial neural
network for measuring organizational effectiveness," Journal of
Computing in Civil Engineering, Vol. 14, No. 1, pp. 9-14.
35. Smith, M. (1993), "Neural networks for statistical modeling," Van Norstrand Reinhold, New York, USA.
36. Terzaghi, K. (1943), “ Theoretical Soil mechanics, ”John Wiley
and Sons, Inc., New York .
37. Tsai, C.P. and Lee, T.L. (1999), "Back-propagation neural network in tidal-level forecasting," Journal of Waterway, Port, Coastal, and Ocean Engineering, Vol. 125, No. 4, pp. 195-202.
38. Tsai, C.P., Shen, J.N. and Kerh, T. (1999), "Wave forecasting using neural network model," B. Kumar and B.H.V. Topping (Editors), Civil-Comp Press, Edinburgh, UK, pp. 125-130.
39. Villiers, J. and Barnard, E. (1993), "Back-Propagation neural nets with one and two Hidden Layers," IEEE Transaction On Neural Networks, Vol. 4, No. 1, pp. 136-141.
40. Waszczyszyn, Z. (1998), "Some new results in application of
back propagation neural networks in structural and civil
engineering," Advances in Engineering Computational Technology, B.H.V. Topping (Editor), Civil-Comp Press, UK, pp. 173-187.
41. Wang, Y.M. and Ju, S.H. (1998), Time-dependent absorbing boundary conditions for elastic wave propagation, Report of NSC in R.O.C, NSC-87-2622-E-006-017.
42. Yagawa, G. and Okuda, H. (1996), "Finite element solution with feedback network mechanism through direct minimization of energy functionals ," International Journal for Numerical Methods in Engineering, Vol. 39, pp. 867-883.
43. Zeng, P. (1995), "Artificial neural network computing in structural engineering," Developments in Neural Networks and Evolutionary Computing for Civil and Structural Engineering, B.H.V. Topping (Editor), Civil-Comp Press, Edinburgh, UK, pp. 37-50.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top