跳到主要內容

臺灣博碩士論文加值系統

(44.192.115.114) 您好!臺灣時間:2023/09/23 09:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊為宗
研究生(外文):Yang Wei-Tsung
論文名稱:高屏溪洪水演算水文特性之研究
論文名稱(外文):A Study on Hydrologic Characteristics of Kao-Ping River Flood Routing
指導教授:鄒 禕
指導教授(外文):Tsou I
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:土木工程系碩士班
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:103
中文關鍵詞:高屏溪洪水演算Muskingum-CungeHEC-RAS
外文關鍵詞:Kao-Ping Riverflood routingMuskingum-CungeHEC-RAS
相關次數:
  • 被引用被引用:8
  • 點閱點閱:781
  • 評分評分:
  • 下載下載:95
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用高屏溪流域所紀錄的暴雨時流量探討退水曲線與洪水演算時之水文特性K及x變化。高屏溪主要支流荖濃溪,旗山溪與隘寮溪為研究對象。在退水係數方面結果,以1981年為分界,各支流下游流量站集水區,1981年之前的退水係數均略大1981年之後的退水係數。將高屏溪流分成五個河段,進行Muskingum-Cunge演算。結果顯示在水文特性方面,平均傳遞時間在荖濃溪上下游段分別為2.83與3.52;在旗山溪上下游段平均傳遞時間分為3.31及3.52;在隘寮溪平均傳遞時間為3.98。在荖濃溪與旗山溪下游段平均傳遞時間比上游段傳遞時間大。各河段之加權參數x大致維持在0.491-0.499。結果亦顯示K值與尖峰流量有中度相關性。本研究驗證結果以平均傳遞時間計算之Muskingum-Cunge流量與HEC-RAS模式比較,其尖峰誤差大致維持在8%內。
The study utilizes Kao-Ping River recorded storm flow to discuss recession curve and changes of hydrologic characteristics K, x on flood routing. The study area includes three upstream branches of Kao-Ping River, which are Lao-Nung River, Chi-San River, and Yai-Liao River. At recession coefficient aspect, it shows that the recession coefficient before 1981 is larger than the recession coefficient after 1981, for the downstream discharge stations of every branches. According to the location of discharge stations, the study area divided into five reaches to process Muskingum-Cunge routing. The results exhibited that the average traveling time K of upstream and downstream reaches for Lao-Nung River is 2.83 and 3.52 separately; the average traveling time K of upstream and downstream reaches for Chi-San River is 3.31 and 3.52 separately and the average traveling time K for Yai-Liao River is 3.98. The average traveling time K of downstream reaches is larger than the average traveling time K of upstream reaches for both Lao-Nung River and Chi-San River. The weighting factor x of every reaches will maintain 0.491~0.499. The result also shows that K values have some median relationship with peak discharge. For verification, the study compares the results of Muskingum-Cunge and HEC-RAS model, the relative error of peak discharge is about 8%.
目錄
中文摘要………………………………………………………….Ⅰ
英文摘要………………………………………………………….Ⅱ
誌謝……………………………………………………………….Ⅲ
目錄……………………………………………………………….Ⅳ
表目錄…………………………………………………………….Ⅶ
圖目錄…………………………………………………………….Ⅸ
第1章 緒論………………………………………………………..1
1.1 研究背景…………………………………………………1
1.2 研究動機與目的…………………………………………1
1.3 過去之相關研究…………………………………………2
第2章 流域環境分析..……………………………………………6
2.1 高屏溪流域簡介…………………………………………6
2.2 地表水文分析……………………………………………9
2.3 雨量分析………………………………………………...12
第3章 研究方法………………………………………………….15
3.1 退水曲線……………...……….………………………...15
3.2 流域地文特性因子……………………………………...17
3.3 馬斯金更模式理論…......……………………………….19
3.4 Muskingum-Cunge模式理論…………………………...23
3.5 多變量迴歸分析………………………………………...26
3.6 HEC-RAS河川演算模式……………………………….26
3.6.1基本控制方程式……………………………...……….27
3.6.2 HEC-RAS模式之建立...………………………….…..28
3.6.3模式的比較……………………………………..……..28
第4章 資料分析與整理………………………………………….31
4.1 退水曲線之分析………………………………………...31
4.2 地文資料..…………...………………………………...33
4.2.1基本地文因子……...………………………………...33
4.2.2各河道斷面資料……………………………………..33
4.3 水文資料………………………………………………...41
4.4 Muskingum-Cunge模式………………………………...42
第5章 結果與討論……………………………………………...46
5.1 河川退水曲線…………………………………………...46
5.2 馬斯金更模式演算……………………………………...50
5.3 Muskingum-Cunge模式演算…………………………...54
5.4 多變量迴歸分析之探討………………………………...60
5.5 敏感度分析之探討……………………………………...60
5.6 HEC-RAS河川演算模式……………………………….64
第6章 結論與建議……………………………………………...68
6.1 結論………..………………………..…………………...68
6.2 建議……………………………………………………...69
參考文獻………………………………………………………….71
附錄一 各演算河段水面頂寬之關係式..…....………………….77
附錄二 各演算河段所有暴雨之率定曲線….……..………..…..84
附錄三 Muskingum-Cunge所演算五個河段之結果…………...97
表目錄
表2.1 高屏溪流域支流概況表……...…………….……..…..6
表2.2 高屏溪流域流量站站況…….………………….…..10
表2.3 高屏溪各流量測站平均逕流量分析……..…………….11
表2.4 高屏溪流域氣象站站況表……..……………………….13
表2.5 高屏溪流域內各氣象站月平均降雨量及年降雨量表...14
表4.1 高屏溪流域之主要支流地文因子…………………..….34
表4.2 高屏溪流域之地文因子………………………………...34
表4.3 演算河段流量站率定曲線整理表…………………...…43
表4.4 范迪颱風之率定曲線及水面寬關係式……………...…44
表4.5 傳遞時間及加權參數之求法-以范迪颱風為例…….….44
表5.1 高屏溪流域主要支流之退水係數…………………...…46
表5.2 時間及流量分類之依據……………………………...…55
表5.3 以颱洪起訖時間為主之傳遞時間和加權參數………...57
表5.4 以尖峰流量到達時間為主之傳遞時間和加權參數…...57
表5.5 以尖峰流量為主之傳遞時間和加權參數…………...…58
表5.6 五個河段傳遞時間與地文因子迴歸分析結果……...…61
表5.7 阿其巴橋至新發大橋傳遞時間迴歸分析結果……..….61
表5.8 新發大橋至里嶺大橋傳遞時間迴歸分析結果………...62
表5.9 楠峰橋至杉林大橋傳遞時間迴歸分析結果……..…….62
表5.10 杉林大橋至里嶺大橋傳遞時間迴歸分析結果…….…..63
表5.11 三地門至里嶺大橋傳遞時間迴歸分析結果………..….63
表5.12 敏感度分析之結果……………………….……………..64
表5.13 Cunge與兩個斷面模擬結果表…………………….……66
表5.14 Cunge與三個斷面模擬結果表…………………….……66
表5.15 Cunge與五個斷面模擬結果表………………………….67
圖目錄
圖2.1 高屏溪流域河川水系圖…………………….………...7
圖3.1 研究流程圖…………………………………….…………16
圖3.2 河川之稜形蓄水與楔形蓄水….…………………...….…20
圖3.3 高屏溪流域之五個河段示意圖………………………….25
圖3.4 HEC-RAS模式建立流程圖………………….…………29
圖4.1 退水流量與時間之半對數圖…………………………….32
圖4.2 妮娜颱風洪水歷線與退水曲線之比較…….…...……….32
圖4.3 梅山站斷面變化圖………………….……………………36
圖4.4 阿其巴橋斷面變化圖………………….…………………36
圖4.5 新發大橋斷面變化圖…………………………….………37
圖4.6 民族橋斷面變化圖……………………………………….37
圖4.7 民權橋斷面變化圖………………………….…………....38
圖4.8 楠峰橋斷面變化圖……………………………………….38
圖4.9 月眉斷面變化圖………………………………..…..…….39
圖4.10 杉林大橋斷面變化圖………………………………..….39
圖4.11 里嶺大橋斷面變化圖…………………………………...40
圖4.12 三地門斷面變化圖……..…………………………….....40
圖5.1 荖濃溪新發大橋之賀伯颱風…………………….….…...47
圖5.2 旗山溪杉林大橋之賀伯颱風……………………...…......47
圖5.3 隘寮溪三地門之賀伯颱風……………………….………48
圖5.4 平均退水係數圖……………………………….…….…...49
圖5.5 三條主要支流之地文因子…………………………….…49
圖5.6 稽延4小時之洪水歷線………………………...…….…..51
圖5.7 稽延4小時之演算結果.……………………….....…..…..51
圖5.8 面積修正後之洪水歷線...………………………....……..52
圖5.9 面積及雨量比修正後之洪水歷線……………………….52
圖5.10 以流量係數修正後之洪水歷線…………………...……53
圖5.11 以流量係數修正後之演算結果……….………………..54
圖5.12 颱洪起訖長短時間之平均傳遞時間圖…………...……58
圖5.13 尖峰流量到達長短時間之平均傳遞時間圖……….…..59
圖5.14 高低尖峰流量之平均傳遞時間圖…………………..….59
圖5.15 Cunge模式與HEC-RAS模式比較圖-19890911洪水為例………………………………………………………………….65
圖5.16 Cunge模式與HEC-RAS模式比較圖-1978范迪颱風為例……………………………………………………………...…..65
圖5.17 Cunge模式與HEC-RAS模式比較圖-1996賀伯颱風為例……………………………………………………………….…66
參考文獻
[1] 王如意、易任,「應用水文學上下冊」,國立編譯館出版,民國八十八年七月。
[2] 徐義人,「應用水文學」,國立編譯館主編,民國八十五年九月。
[3] 徐碧治、林廣台,「水文學」,高立圖書有限公司,民國八十六年一月。
[4] 徐國錦,「馬斯金更模式之研究」,國立台灣大學土木工程研究所碩士論文,民國七十六年六月。
[5] 陳昶憲、林榮坤、康村啟,「應用卡門濾波法建立洪水演算模式之探討」,台灣水利,第四十二卷第一期,pp. 57-73,民國八十三年三月。
[6] 陳昶憲、康村啟,「線性洪水演算模式參數之時序推估法」,台灣水利,第四十四卷第一期,pp. 64-80,民國八十五年三月。
[7] 陳昶憲、王寧本,「利用遺傳演算法建立考慮支流與側流之馬斯金更演算模式」,中國土木水利工程學刊,第二十三卷第三期,pp. 3-16,民國八十五年十一月。
[8] 陳昶憲、郭振泰、王寧本,「複合支流馬斯金更模式之建立」,中國土木水利工程學刊,第九卷第一期,pp. 187-192,民國八十六年。
[9] 陳昶憲、楊朝仲,「時序類神經集水區洪水預測模式」,台灣水利,第四十六卷第一期,pp. 84-98,民國八十七年三月。
[10] 陳昶憲、康村啟、陳建宏,「限制性卡門濾波器應用於馬斯金更洪水演算」,台灣水利,第四十六卷第二期,pp. 30-37,民國八十七年六月。
[11] 陳昶憲、邱茂德、康村啟,「多變量馬斯金更差分演算模式之研究」,逢甲學報,第二十八期,pp. 253-271。
[12] 傅金城,「淡水河洪水預報模式參數即時修正之研究」,國立台灣大學農業工程研究所碩士論文,民國八十六年六月。
[13] 經濟部水資源局,「臺灣水文年報」,民國八十八年八月。
[14] Aldama, A. A. (1990), " Least-Squares Parameter Estimation for Muskingum Flood Routing, " Journal of Hydraulic Engineering (ASCE) JHEND8, Vol. 116, No. 4, pp. 580-586.
[15] CRAINE, LYLE-E. (1957), " THE MUSKINGUM WATERSHED CONSERVANCY DISTRICT: A STUDY OF LOCAL CONTROL, " LAW AND CONTEMPORARY PROBLEMS, Vol. 22, No. 3, pp. 378-404.
[16] CUNGE, J. A. (1969), " On The Subject Of A Flood Propagation Computation Method (Muskingum Method), " TEXT ALSO PRINTED IN FRENCH.JOURNAL OF HYDRAULIC RESEARCH, Vol. 7, No. 2, pp. 205-230.
[17] Collado, J. and Wagner, A. (1990), " User-Developer Interaction: The Experience of Hydrograph Combination for Flood Routing Methods, " IN: Transferring Models to User. American Water Resources Association Bethesda, Maryland. pp. 375-384.
[18] DISKIN, M. H. (1967), " ON THE SOLUTION OF THE MUSKINGUM FLOOD ROUTING EQUATION, " J HYDROL, Vol. 5, No. 3, pp. 286-289.
[19] Gill, M. A. (1977), " Routing of Floods in River Channels, " Nordic Hydrology, Vol. 8, No. 3, pp. 163-173.
[20] Gill, M. A. (1978), " Flood Routing by the Muskingum Method, " Journal of Hydrology, Vol. 36, No. 3/4, pp. 353-363.
[21] Gill, M. A. (1979), " Translatory Characteristics of the Muskingum Method of Flood Routing, " Journal of Hydrology, Vol. 40, No. 1/2, pp. 17-29.
[22] Gill, M. A. (1979), " Critical Examination of the Muskingum Method, " Nordic Hydrology, Vol. 10, No. 4, pp. 261-270.
[23] Gill, M. A. (1980), " Translatory Characteristics of the Muskingum Method of Flood Routing Reply, " Journal of Hydrology, Vol. 48, No. 3/4, pp. 369-372.
[24] Gill, M. A. (1984), " Time Lag Solution of the Muskingum Flood Routing Equation, " Nordic Hydrology, Vol. 15, No. 3, pp. 145-154.
[25] Gill, M. A. (1989), " Response of Muskingum Equation to Step Input, " Journal of Irrigation and Drainage Engineering (ASCE) JIDEDH, Vol. 115, No. 4, pp. 736-738.
[26] Georgakakos, A. P. , Georgakakos, K. P. and Baltas, E. A. (1990), " State-Space Model for Hydrologic River Routing, " Water Resources Research WRERAQ, Vol. 26, No. 5, pp. 827-833.
[27] Garbrecht, J. and Brunner, G. (1991), " Hydrologic Channel-Flow Routing for Compound Sections, " Journal of Hydraulic Engineering (ASCE) JHEND8, Vol. 117, No. 5, pp. 629-642.
[28] Heggen, R. J. (1984), " Time Lag Solution of the Muskingum Flood Routing Equation, " Water Resources Bulletin, Vol. 20, No. 1, pp. 103-107.
[29] Hjelmfelt, A. T. Jr. (1985), " Negative Outflows from Muskingum Flood Routing, " Journal of Hydraulic Engineering, Vol. 111, No. 6, pp. 1010-1014.
[30] Jones, S. B. (1982), " Choice of Space and Time Steps in the Muskingum-Cunge Flood Routing Method, " Proceedings of the Institution of Civil Engineers. Part 2, Research and Theory, Vol. 71, No. 3, pp. 759-772.
[31] J. Szilagyi (1992), " Why can the weighting parameter of the Muskingum channel routing method be negative?, " Journal of Hydrology, Vol. 138, No. 1/2, pp. 145-151.
[32] Luo, B. and Qian, X. (1987), " Some Problems with the Muskingum Method, " Hydrological Sciences Journal HSJODN, Vol. 32, No. 4, pp. 485-496.
[33] Ma, X. (1990), " An Investigation of Continuity Equation and Flood Routing, " IN: Hydraulic Engineering: Proceedings of the 1990 National Conference. American Society of Civil Engineers, New York. pp. 403-408.
[34] M. Perumal (1992), " Multilinear Muskingum flood routing method, " Journal of Hydrology, Vol. 133, No. 3/4, pp. 259-272.
[35] M. Perumal (1992), " The Cause of Negative Initial Outflow with the Muskingum Method, " Hydrological Sciences Journal HSJODN, Vol. 37, No. 4, pp. 391-401.
[36] O''Donnell, T. (1985), " Direct Three-parameter Muskingum Procedure Incorporating Lateral Inflow, " Hydrological Sciences Journal, Vol. 30, No. 4, pp. 479-496.
[37] O''Donnell, T. , Pearson, C. P. and Woods, R. A. (1988), " Improved Fitting for Three-parameter Muskingum Procedure, " Journal of Hydraulic Engineering JHEND8, Vol. 114, No. 5, pp. 516-528.
[38] Ponce, V. M. (1979), " Simplified Muskingum Routing Equation, " Journal of the Hydraulics Division, American Society of Civil Engineers, Vol. 105, No. HY1, Technical Note, pp. 85-91.
[39] Peterson, W. C. and Verhoff, F. H. (1982), " Muskingum-Like Approximations for Water Routing, " Journal of the Hydraulics Division, Proceedings of the American Society of Civil Engineers, Vol. 108, No. HY11, pp. 1387-1393.
[40] Rolando Bravo, David A. Dow and Jerry R. Rogers (1994), " Parameter determination for the muskingum-cunge flood routing method, " Water Resources Bulletin, Vol. 30, No. 5, pp. 891-899.
[41] Singh, V. P. and McCann, R. C. (1979), " Quick Estimation of Parameters of Muskingum Method of Flood Routing, " Proceedings 14th Annual Mississippi Water Resources Conference, 24-25, pp. 65-69.
[42] Strupczewski, W. and Kundzewicz, Z. (1980), " Muskingum Method Revisited, " Journal of Hydrology, Vol. 48, No. 3/4, pp. 327-342.
[43] Singh, V. P. and McCann, R. C. (1980), " Some Notes on Muskingum Method of Flood Routing, " Journal of Hydrology, Vol. 48, No. 3/4, pp. 343-361.
[44] Singh, V. P. , Scarlatos, P. D. and Raudales, S. A. (1988), " Muskingum Model for Border Irrigation, " Journal of Irrigation and Drainage Engineering (ASCE) JIDEDH, Vol. 114, No. 2, pp. 266-280.
[45] Strupczewski, W. G. , Napiorkowski, J. J. and Dooge, J. C. I. (1989), " Distributed Muskingum Model, " Journal of Hydrology JHYDA7. Vol. 111, No. 1-4, pp. 235-257.
[46] Strupczewski, W. G. and Napiorkowski, J. J. (1990), " What Is the Distributed Delayed Muskingum Model, " Hydrological Sciences Journal HSJODN, Vol. 35, No. 1, pp. 65-78.
[47] Tung, Y. (1985), " River Flood Routing by Nonlinear Muskingum Method, " Journal of Hydraulic Engineering (ASCE) JHEND8, Vol. 111, No. 12, pp. 1447-1460.
[48] VENETIS, C. (1969), " THE IUH (INSTANTANEOUS UNIT HYDROGRAPH) OF THE MUSKINGUM CHANNEL REACH, " J HYDROL, Vol. 7, No. 4, pp. 444-447.
[49] Wu, J. S. , King, E. L. and Wang, M. (1985), " Optimal Identification of Muskingum Routing Coefficients, " Water Resources Bulletin WARBAQ, Vol. 21, No. 3, pp. 417-421.
[50] Wang, G. T. and Singh, V. P. (1992), " Muskingum method with variable parameters for flood routing in channels, " Journal of Hydrology, Vol. 134, No. 1/4, pp. 57-72.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top