跳到主要內容

臺灣博碩士論文加值系統

(3.238.98.39) 您好!臺灣時間:2022/09/26 11:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張文傑
論文名稱:序率地下水流溶質傳輸
論文名稱(外文):Numerical simulation of solute transport with stochastic groundwater flow
指導教授:葉一隆葉一隆引用關係
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:土木工程系碩士班
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:60
中文關鍵詞:地下水流非均質性溶質傳輸序率
外文關鍵詞:groundwater flowheterogeneoussolute transportstochastic
相關次數:
  • 被引用被引用:1
  • 點閱點閱:306
  • 評分評分:
  • 下載下載:23
  • 收藏至我的研究室書目清單書目收藏:0
本文目的在探討含水層之非均質性對地下水流與溶質傳輸之影響。對地下水流之模擬採序率模式之一階擾動法來計算,將導水係數和水力水頭分為平均項及擾動項,以有限差分法來建立平面二維序率地下水流模式,而溶質傳輸模式則利用有限差分法來建立定率之模式。利用序率地下水流模式分別求得水力水頭平均項及擾動項,以分析擾動項之水力水頭對地下水流所造成之影響,進而分析此影響對溶質傳輸的影響,並與定率之地下水流模式所求得之溶質傳輸比較。由本研究中發現水力水頭之擾動項會造成地下水主要流向之流速減慢,而使得序率流場之溶質傳輸速率比定率流場所求得之溶質傳輸速率來的慢。
This study examined the heterogeneous influence on groundwater flow and solute transport in a confined aquifer. A stochastic model with first moment was used to calculate groundwater flow in the model hydraulic head and hydraulic conductivity expressed as mean and perturbation terms. The two-dimensional unsteady groundwater flow model was built with the Finite Difference Method. The deterministic solute transport was built with the Finite Difference Method as well. The stochastic groundwater flow model calculated the mean and perturbation terms of hydraulic head. The perturbation of hydraulic head was analyzed for its influence on groundwater flow and its further impact on solute transport. The solute transport under such circumstances was compared with that derived from the deterministic groundwater model. This study showed that the perturbation of hydraulic head could slow down groundwater velocity in principal direction and was responsible for the slower rate of solute transport in stochastic flow field than in deterministic flow field.
摘要……………………………………………………….…..I
英文摘要…………………………………………………….….II
誌謝…………………………………………………………….III
目錄……………………………………………………..……..IV
圖目錄…………………………………………………………..VI
表目錄…………………………………………………….…….IX
第一章 緒論…………………………………………………….1
1.1 研究動機與目的………………………………………….1
1.2 前人研究………………………………………………….2
1.3 研究方法………………………………………………….4
第二章 模式理論與控制方程式…………………………….…7
2.1模式理論…………………………………………………..7
2.1.1序率模擬理論………………………………………..7
2.1.2 序率過程………………………………………….…8
2.1.3 水力傳導係數…………………………………….…9
2.2控制方程式……………………………………………....9
2.2.1 地下水流控制方程式…………………………….…9
2.2.2 溶質傳輸控制方程式………………………………11
2.3邊界條件 ………………………………………………..12
第三章 數值模式…………………….…………………………13
3.1有限差分數值模式……………………………………...13
3.1.1地下水流之差分方程式建立……………………….13
3.1.2溶質傳輸差分式之建立………………………….…18
3.2數值模式之建立……………………………………….…20
3.3數值模式之驗證……………………………………….…23
3.3.1地下水流模式之驗證……………………………...23
3.3.2溶質傳輸模式之驗證……………………………….25
第四章 模式應用……………………………………………….31
4.1 數值模式模擬……………………………………………31
4.2 模擬結果分析……………………………………………32
第五章 結論與建議…………………………………………….51
5.1結論……………………………………………….……..51
5.2建議…………………………………………….……..…52
參考文獻…………………………………………….………….53
附錄A 溶質傳輸控制方程式推導……………………….……..58
1.黃崇琅,1998,「大尺度異質性含水層溶質傳輸現象之研究」,國立成功大學資源工程研究所碩士論文。
2.潘建邦,1994,「位飽和層溶質傳輸變異性之研究」,國立成功大學資源工程研究所碩士論文。
3.Ababou, R., 1988, Three-dimensional flow in random porous media, Ph.D. dissertation, Massschusetts Institute of Technology, Boston.
4. Alexander, M., 1994, Biodegradation and bioremediation, Academic, San Diego, Calif.
5.Anderson, M. P., and W. W. Woessner, 1992, Applied groundwater modeling, simulation of flow and advective transport, Academic Press, New York.
6.Bakr, A. A., 1976, Stochastic analysis of the effects of spatial variation in hydraulic conductivity on groundwater flow, Ph. D. dissertation, N. M. Inst. of Mining and Technol., Socorro. USA.
7.Bakr, A. A., 1978, Stochastic analysis of spatial variability in subsurface flows, comparison of one- and three- dimensional flows, Water Resour. Res., Vol.14, No.2, pp.263-271.
8.Bear, J., 1972, Dynamic of fluids in porous media, American Elsevier, New York.
9.Bear, J., 1979, Hydraulics of groundwater, McGraw-Hill Inc., pp.129-140.
10.Bredehoeft, J. D. and G.F. Pinder, 1973, Mass transport in flowing groundwater, Water Resour. Res., Vol.1, No.9, pp.194-210.
11.Bresler, E., and G. Dagan, 1981, Convective and pore scale dispersive solute transport in unsaturated heterogeneous fields, Water Resour. Res., Vol.17, pp.1683-1693.
12.Cleary, R. W., and M. J. Ungs, 1978, Groundwater pollution and hydrology, mathematical models and computer programs, Rep. 78-WR-15, Water Rewour. Program, Princeton Univ., Princeton, N. J.
13.Dagan G., 1989, Flow and transport in porous formations, Springer-Verlag, New York.
14.Freeze, R. A., 1975, A stochastic-conceptual analysis of one-dimensional groundwatwr flow in nonuniform homogeneous media, Water Resour. Res., Vol.11, No.5, pp.725-741.
15.Gelhar, L. W., 1974, Stochastic analysis of phreatic aquifers, Water Resour. Res., Vol.10, No3, pp.539-545.
16.Gelhar, L. W., 1986, Stochastic subsurface hydrology from theory to applications, Water Resour. Res., Vol.22, No.9, pp.135-145.
17.Gelhar, L. W., 1993, Stochastic subsurface hydrology, Prentice Hall, New York.
18.Grove, D. B., and K. G. Stollenwerk, 1984,Computer model of one-dimensional equilibrium controlled sorption processes, U.S. Gelogical Survey Water Resources Investigations.
19.Harter, T., and D. Zhang, 1999, Water flow and solute spreading in heterogeneous soils with spatially variable water content, Water Resour. Res., Vol.35, No.2, pp.415-426.
20.Javandel, I., C. Doughty, and C. F. Tsang, 1984, Groundwater transport, Handbook of mathematical models, pp.18-34.
21.Konikow, L. F., and D. B. Grove, 1977, Derivation of equations describing solute transport in groundwater, U.S. Geol. Survey Water Resources Investigations.
22.Lohman, S. W., 1972, Ground-water hydraulics, Geological Survey Professional Paper,708, Washington, United States Government Printing Office.
23.Mantoglou, A., and L. W. Gelhar, 1992, Stochastic modeling of large-scale transient unsaturated flow systems, Water Resour. Res.,Vol.28, No.9, pp2297-2306.
24.Neuman, S. P. and Y. Z. Zhang, 1990, A quasi-linear theory of non-Fickian and Fickian subsurface dispersion. 1. theoretical analysis with application to isotropic media, Water Resour. Res., Vol.26, No5, pp.887-902.
25.Ogata, A., 1970, Theory of dispersion in a granular medium. U.S. Geol. Surv. Prof. Paper411-I.
26.Russo, D., 1993, Stochastic modeling of macrodispersion for solute transport in a heterogeneous unsaturated porous formation, Water Resour. Res., Vol. 29, No. 2, pp.383-397.
27.Russo, D., 1998, Stochastic analysis of flow and transport in unsaturated heterogeneous porous formation, Water Resour. Res. Vol.34, No.4, pp.569-581.
28.Theis ,C. V. 1935, The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using ground-water storage, Transactions AGU, 16.
29.Tompson, A. F. B., and L. W. Gelhar, 1990, Numerical simulation of solute transport in three-dimensional, randomly heterogeneous porous media, Water Resour. Res.,Vol 26, No.10, pp.2541-2562.
30.Wen, J. C., 1992, Flow and solute transport in saturated soil with self-permeability distribution, Ph.D. dissertation, Utah State University, Logan Utah, USA.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top