跳到主要內容

臺灣博碩士論文加值系統

(34.204.172.188) 您好!臺灣時間:2023/09/22 18:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳兆凱
論文名稱:發展具Holonic概之兩階段排程法
論文名稱(外文):A study of constructing a two-stage scheduling/rescheduling algorithm in holonic manufacturing environment
指導教授:李祥林李祥林引用關係
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:工業管理系
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:125
中文關鍵詞:排程重排程重排時程長度全方位製造系統遺傳基因演算法
外文關鍵詞:SchedulingReschedulingRescheduling planning horizonHolonic manufacturing systemsGenetic algorithms
相關次數:
  • 被引用被引用:19
  • 點閱點閱:260
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
排程之目的在於規劃未來的生產作業活動,使其更有效率。然而在排程制定後,常會因為原料短缺、機器故障、緊急訂單等因素而需更改原有的工作內容及進度,使得排程需要不斷地修正。若企業在面臨重排程決策時,能在本身成本可容許的範圍內,減少重排程的變異幅度,縮小重排程的時程範圍,將可減小對於供應鏈及企業本身的衝擊。故本研究藉由全方位製造系統的概念,運用遺傳基因演算法,建構出一個具有兩階段的排程方法。第一階段是在生產週期之前,規劃具備整體最佳化之主生產排程;另外則是在生產過程中,當接到緊急訂單時,執行第二階段之重排程,以適時地反應訂單變化,並規劃新訂單及尚未完成之訂單的作業時程。研究顯示,小範圍的重排程,在成本與反應時間上,均較大範圍的重排程來得佳,此一現象與全方位製造系統中的自主性特徵類似。依此原則,可將小範圍的重排程排作業,委由生產現場處理,而讓生管人員專注於整體生產資源的最佳調度。
Scheduling has been one of the major tasks in operational management. It has direct impact on the efficiency and effectiveness of production operations. In order to obtain a better production schedule to improve the performance of daily production operations and to increase the competition of the business organization, numerous academic researchers and industrial participants have devoted tremendous amount of effort in developing scheduling algorithms. Due to the combinatorial characteristics, the scheduling problems are classified as NP-hard. Therefore, various heuristics, such as genetic algorithm, simulated annealing, and others, have been developed and tested to show the strength of obtaining closed-to-optimal solutions. Besides, it is quite common that new orders and/or rush orders may arrive after the master production schedule has been determined. The need of scheduling new arrivals creates the problem of ‘re-scheduling’. Scheduling and re-scheduling become typical hurdles for production planning personnel. It is very common, when rescheduling is needed, to reschedule all the pending orders. Such rescheduling method results in building a new mater production schedule every time when a new order is received. It is very typical that the production planning department holds a large number of pending orders. To reschedule all the pending orders increases the responding time to confirm a new order and to alter scheduled activities, including material planning, human resource planning, and etc. In the modern industrial environment, longer responding time means less profit. Therefore, how to shorten the responding time of rush orders, i.e., how to reschedule rush order in less time, has become one important issue in production planning domain.
This thesis develops a two-stage methodology to perform scheduling and rescheduling activities. The first stage determines the master production schedule. At the second stage, a partial rescheduling algorithm is developed to shorten the responding time to newly arrived rush orders. The partial rescheduling algorithm only reschedule the first several orders and the rush order and leaves the sequence of the rest orders unchanged. The problem is formulated as a nonlinear problem, which encompasses production costs, material and finished products storage costs, communication cost for changing delivery time, emergent procurement cost and penalty cost for late delivery. At both stages, genetic algorithm is used to solve scheduling and re-scheduling problems. The results show that the partial rescheduling methodology has advantages in terms of responding times and costs. It is also found that the numbers of orders to be rescheduled are between 5 and 7. Statistical tests show that capacity utilization, material storage cost, and communication cost have significant effect on rescheduling.
第一章 緒論
1.1 研究動機 …………………………………………………… 1
1.2 研究目的 …………………………………………………… 4
1.3 研究限制 …………………………………………………… 5
1.4 研究流程 …………………………………………………… 6
1.5 論文架構 …………………………………………………… 8
第二章 文獻探討
2.1 排程理論之探討 …………………………………………… 9
2.2 生產系統控制架構之演進 ………………………………… 16
2.3 分散式製造系統之概述 …………………………………… 19
2.4 階層式與分散式控制架構之比較 ………………………… 21
2.5 全方位製造系統之論述 …………………………………… 26
2.6 重排程決策問題與分析 …………………………………… 27
2.7 遺傳基因演算法之理論與運作 …………………………… 41
2.8 結語 ………………………………………………………… 53
第三章 主生產排程與重排程模式之建構
3.1 模式背景之說明 …………………………………………… 54
3.2 模式基本假設 ……………………………………………… 57
3.3 模式之設計與相關說明 …………………………………… 58
3.4 遺傳基因演算法 …………………………………………… 67
第四章 實證分析
4.1 範例描述 …………………………………………………… 70
4.2 實驗結果 …………………………………………………… 74
4.3 分析與討論 ………………………………………………… 101
第五章 結論與建議
5.1 結論 ………………………………………………………… 110
5.2 建議 ………………………………………………………… 112
參考文獻 ………………………………………………………… 113
圖 目 錄
圖1-1 研究流程圖 ………………………………………………… 6
圖2-1 四種製造系統之控制架構 ………………………………… 17
圖2-2 Holon整體與部份之示意圖 …………………………………25
圖2-3 三種基本holon的運行關係 ……………………………… 27
圖2-4 階層式的Scheduler holon與其它holon的對應關係 …… 28
圖2-5 執行重排程決策之問題 …………………………………… 35
圖2-6 遺傳基因演算法之運算流程 ……………………………… 47
圖3-1 模式運作流程圖 …………………………………………… 55
圖3-2 兩點交配運算法運作圖 …………………………………… 68
圖3-3 位移突變法運作圖 ………………………………………… 69
圖4-1 高產能利用率的產能需求圖 ……………………………… 71
圖4-2 低產能利用率的產能需求圖 ……………………………… 71
圖4-3 ---世代族群的散佈圖 ………………………………… 76
圖4-4 ---配對池的散佈圖 …………………………………… 76
圖4-5 +--世代族群的散佈圖 ………………………………… 78
圖4-6 +--配對池的散佈圖 …………………………………… 78
圖4-7 -+-世代族群的散佈圖 ………………………………… 80
圖4-8 -+-配對池的散佈圖 …………………………………… 80
圖4-9 ++-世代族群的散佈圖 ………………………………… 82
圖4-10 ++-配對池的散佈圖 ……………………………………82
圖4-11 --+世代族群的散佈圖 …………………………………84
圖4-12 --+配對池的散佈圖 ……………………………………84
圖4-13 +-+世代族群的散佈圖 …………………………………86
圖4-14 +-+配對池的散佈圖 ……………………………………86
圖4-15 -++世代族群的散佈圖 …………………………………88
圖4-16 -++配對池的散佈圖 ……………………………………88
圖4-17 +++世代族群的散佈圖 …………………………………90
圖4-18 +++配對池的散佈圖 ……………………………………90
圖4-19 ---+++重排張數對於總成本的影響 ………………93
圖4-20 +----+重排張數對於總成本的影響 ………………94
圖4-21 -+--+-重排張數對於總成本的影響 ………………95
圖4-22 ++-+--重排張數對於總成本的影響 ………………96
圖4-23 --++--重排張數對於總成本的影響 ………………97
圖4-24 +-+-+-重排張數對於總成本的影響 ………………98
圖4-25 -++--+重排張數對於總成本的影響 ………………99
圖4-26 +++++重排張數對於總成本的影響 …………………100
圖4-27 世代族群及配對池平均總成本趨勢線圖 …………………101
圖4-28 世代族群及配對池總成本差距圖 …………………………101
圖4-29 ---+++重排張數與總成本的離散圖 ………………102
圖4-30 -++-+-重排張數對於總成本的影響 ………………105
圖4-31 +---+-重排張數對於總成本的影響 ………………106
圖4-32 -+---+重排張數對於總成本的影響 ………………107
圖4-33 +-+--+重排張數對於總成本的影響 ………………108
表 目 錄
表2-1 與排程相關的績效指標 ……………………………………… 11
表2-2 常用的優先派工法則 ………………………………………… 14
表2-3 四種製造系統控制架構之比較 ……………………………… 18
表2-4 傳統階層式與分散式控制架構之比較 ……………………… 24
表2-5 有關製造性holons與驗證HMS技術與績效之文獻 ……………30
表2-6 全方位製造系統與其它分散式製造系統之比較 …………… 33
表2-7 重排程文獻之整理 …………………………………………… 38
表4-1 高產能利用率的訂單資料 …………………………………… 72
表4-2 低產能利用率的訂單資料 …………………………………… 73
表4-3 實驗變數設定表 ……………………………………………… 74
表4-4 ---的實驗結果 …………………………………………… 75
表4-5 +--的實驗結果 …………………………………………… 77
表4-6 -+-的實驗結果 …………………………………………… 79
表4-7 ++-的實驗結果 …………………………………………… 81
表4-8 --+的實驗結果 …………………………………………… 83
表4-9 +-+的實驗結果 …………………………………………… 85
表4-10 -++的實驗結果 ……………………………………………87
表4-11 +++的實驗結果 ……………………………………………89
表4-12 緊急訂單資料表 ………………………………………………91
表4-13 重排程之實驗因子表 …………………………………………92
表4-14 ---+++重排後的結果 …………………………………93
表4-15 +----+重排後的結果 …………………………………94
表4-16 -+--+-重排後的結果 …………………………………95
表4-17 ++-+--重排後的結果 …………………………………96
表4-18 --++--重排後的結果 …………………………………97
表4-19 +-+-+-重排後的結果 …………………………………98
表4-20 -++--+重排後的結果 …………………………………99
表4-21 ++++++重排後的結果 …………………………………100
表4-22 重排程統計分析表 ……………………………………………103
表4-23 重排程二次實驗因子表 ………………………………………104
表4-24 -++-+-重排後的結果 …………………………………105
表4-25 +---+-重排後的結果 …………………………………106
表4-26 -+---+重排後的結果 …………………………………107
表4-27 +-+--+重排後的結果 …………………………………108
表4-28 二次重排程統計分析結果表 …………………………………109
1. 王孔政、周崇皓,“以代理人為基礎之分散式製造系統-建構方法之研究“,工業工程學刊,第十八卷、第1期,第1~14頁(2001)
2. 吳鴻輝、李榮貴,“生產排程之重排程決策問題的文獻探討與分析“,工業工程學刊,第十四卷、第2期,第147~158頁(1997)
3. 林則孟,“全方位製造系統“,http://www.automat.ccu.edu.tw(2001)
4. 柯惠雯,“結合模擬退火法與禁忌搜尋法在流程式生產排程之應用”,第5~19頁,大葉大學工業工程研究所碩士論文(2001)
5. 許恣華,“分散式協調機制於晶圓廠自動化物料搬運系統之運用”,第10~56頁,清華大學工業工程與管理研究所碩士論文(1999)
6. 陳建良,“排程概述”,機械工業,第153期,第122~137頁(1995)
7. 陳澤右,“以往復式協調機制為基礎之分散式製造與搬運系統”,第1~40頁,中原大學工業工程研究所碩士論文(1999)
8. 楊宗銘,“遺傳基因演算法在多途程問題之探討”,第15~58頁,中原大學工業工程研究所碩士論文(1995)
9. 楊明璧(譯),L. J. Krajewski、L. P. Ritmza(原著),作業管理-策略與分析,智勝文化,台北(2000),第五版,第764~765頁。
10. 詹景湖,“使用遺傳基因演算法於血液透析調控之研究”,第1~15頁,雲林科技大學工業工程與管理技術研究所碩士論文(1998)
11. 駱景堯、吳泰熙、張俊仁,“結合模糊理論與遺傳演算法於多目標彈性製造系統排程問題研究“,工業工程學刊,第十六卷、第3期,第391~404頁(1999)
12. 駱景堯、張俊仁,“遺傳演算法在彈性製造系統排程問題之探討”,大葉學報,第七卷、第1期,第79~90頁(1998)
13. Adam, N. and J. Surkis, (1980),“Priority update intervals and anomalies in dynamics ratio job shop scheduling rules”Management Science, Vol. 26, pp. 1227~1237
14. Adams, J., E. Balas, D. Zawack, (1988),“The shifting bottleneck procedure for job-shop scheduling”Management Science, Vol. 34, pp. 391~401
15. Adiri, I., J. Bruno, E. Frostig, A. Rinnoy Kan, (1989), “Single machine flow time scheduling with a single breakdown”Acta Information, Vol. 26, pp. 679~696
16. Amos, H., H. Ricky, and H. Edmund, (1996),“HSCS-the design of a holonic shop floor control system”IEEE, Vol. 9, pp. 50~61
17. Art, E.H.L., P.J.M. Van Laarhoven, J.K. Lenstra, N.L.J. Ulder, (1994), “A computational study of local search algorithms for job shop scheduling”ORSA Journal on Computer, Vol. 6/No. 2, pp. 118~125
18. Ashour, S., (1967),“A decomposition approach for the machine scheduling problem” International Journal of Production Research, Vol. 6, pp. 109~122
19. Axelrod, R., (1985a), Modeling the evolution of norms, Research Report, American Political Science Association Meeting, New Orleans, L.A.
20. Axelrod, R., (1985b), The simulation of genetics and evolution, Research Report, Conference on Evolutionary Theory in Biology and Economics, University of Bielefeld, Federal republic of Germany
21. Baker, K. and D. Petersen, (1979),“An analytic framework for evaluating rolling scheduling”Management Science, Vol. 25, pp. 341~351
22. Baker, K. and J. Martin, (1974),“An experimental comparison of solution algorithm for the single machine tardiness problem”Naval Research Logistic Quarterly, Vol. 21, pp. 187~199
23. Baker, K., (1977),“An experimental study of the effectiveness of rolling schedules in production planning”Decision Science, Vol. 8, pp. 19~28
24. Balas, E., (1965),“An additive algorithm for solving linear programs with zero-one variables” Operations Research, Vol. 13, pp. 517~546
25. Balas, E., (1969), “Machine scheduling via disjunctive graphs:An implicit enumeration algorithm” Operations Research, Vol. 17, pp. 941~957
26. Bean, J., J. Birge, J. Mittenthal, C. Noon, (1991), “Matchup scheduling with multiple resource, release dates and disruption ”Operation Research, Vol. 39, pp. 470~483
27. Biegel, J. E. and J. J. Davern, (1990),“Genetic algorithms and job shop scheduling”Computers Industrial Engineering, Vol. 19, pp. 81~91
28. Bongaerts, L., L. Monostori, D. McFarlane, B. Kadar, (2000),“Hierarchy in distributed shop floor control”Computers in Industry, Vol. 43, pp. 123~137
29. Bongaerts, L., P. Jordan, P. Timmermans, J. Wyns, (1997),“Evolutionary development in shop floor control”Computers in Industry, Vol. 33, pp. 295~304
30. Brah, S.A., and J.L. Hunsucker, (1991), “Branch and bound algorithm for flow shop with multiple processors” European Journal of Operational Research, Vol. 51, pp. 88~99
31. Brucker, P., (1988), “An efficient algorithm for job-shop problem with two jobs”Computing, Vol. 40, pp. 353~359
32. Brucker, P., (1994), “A polynomial algorithm for two machine job-shop scheduling problem with a fixed number of jobs”OR Spektrum, Vol. 16, pp. 5~7
33. Brucker, P., B. Jurisch, b. Sievers, (1994), “A branch and bound algorithm for job shop scheduling problem”Discrete Applied Mathematics, Vol. 49, pp. 109~127
34. Brucker, P., J. Hurink, F. Werner, (1997), “Improving local search heuristics for some scheduling problems part Ⅱ”Discrete Applied Mathematics, Vol. 72, pp. 47~69
35. Brucker, P., S.A. Kravchenko, Y.N. Sotskov, (1997), “On the complexity of two machine job shop scheduling with regular objective function”OR Spektrum, Vol. 19, pp. 5~10
36. Brussel, H., J. Wyns, P. Valckenaers, L. Bongaerts, P. Peeters, (1998),“Reference architecture for holonic manufacturing system:PROSA”Computers in Industry, Vol. 37, pp. 255~274
37. Brussel, H., L. Bongaerts, J. Wyns, P. Valckenaers, T. Ginderachter, (1999),“A conceptual framework for holonic manufacturing:identification of manufacturing holons”Journal of Manufacturing Systems, Vol. 18/No. 1, pp. 35~52
38. Carlier, J. and E. Pinson, (1989), “An algorithm for solving the job shop problem”Management Science, Vol. 35, pp. 164~176
39. Chang, S. and D. Liao, (1994), “Scheduling flexible flow shops with no setup effects”IEEE Transactions on Robotics and Automation, Vol. 10, pp. 112~122
40. Chen, C. L., V. S. Vempati and A. Nasser, (1995), “An application of genetic algorithms for flow shop problems” European Journal of Operational Research, Vol. 80, pp. 389~396
41. Christy, D. and J. Kanet, (1988),“Open order rescheduling in job shops with demand uncertainty:a simulation study” Decision Science, Vol. 19, pp. 801~818
42. Church, L. and R. Uzsoy, (1992),“Analysis of periodic and event-driven ewscheduling policies in dynamics shops”International Journal of Computer Integrated Manufacturing, Vol. 5, pp. 153~163
43. Cleveland, G. A. and S. F. Smith, (1987), “Using genetic algorithms to schedule flow shop release” Proceedings of 3rd International Conference on Genetic Algorithms and Their Applications, pp. 160~169
44. Corce, F.D., R. Tadei, and G. Volta, (1995), “A genetic algorithm for job shop problem” Computer and Operation Research, Vol. 22/No. 1, pp. 15~24
45. Dagli, C. and S. Sittisathanchi, (1993), “Genetic neuro-schedular for job shop scheduling” Proceedings of 15th Annals Conference on Computer and Industry Engineering, pp. 267~270
46. Davis, L., (1985), “Job shop scheduling with genetic algorithms” Proceedings of 1st International Conference on Genetic Algorithms and Their Applications, pp. 136~140
47. Davis, L., (1987), Genetic algorithms and simulated annealing, Pitman Publishing, London
48. Demirokol, E. and R. Uzsoy, (1998), Decomposition methods for scheduling re-entrant flow shops with sequence dependent setup times, Research Report, School of Industrial Engineering, Purdue University
49. Dilts, D., N. Boyd, and H. Whorms, (1991),“The evolution of control architectures for automated manufacturing system”Journal of Manufacturing System, Vol. 10/No. 1, pp. 79~93
50. Duffie, N., R. Chitturi, and J. Mou, (1988),“Fault-tolerant heterarchical control of heterogeneous manufacturing system entities” Journal of Manufacturing System, Vol. 7/No. 4, pp. 315~328
51. Duffie, N., R. Piper, (1986),“Non-hierarchical control of manufacturing system”Journal of Manufacturing System, Vol. 5/No. 2, pp. 137~139
52. Falkenaure, E. and S. Bouffouix, (1991),“A genetic algorithms for job shop scheduling”Proceedings of the 1991 IEEE International Confefence on Robotic and Automation, Sacramento, April, pp. 824~829
53. Farhoodi, F., (1990), “A knowledge-based approach to dynamics job-shop scheduling”International Journal of Computer Integrated Manufacturing, Vol. 3, pp. 84~95
54. Farn, C. and A. Muhlemann, (1979),“The dynamic aspects of a production scheduling problem” International Journal of Production Research, Vol. 17, pp. 15~21
55. Fischer, K., (1999),“Agent-based of holonic manufacturing system” Robotics and Autonomous System, Vol. 27, pp. 3~13
56. Fisher, M.L., (1973a), “Optimal solution of scheduling problems using Lagrange multipliers:Part Ⅰ” Operations Research, Vol. 21, pp. 1114~1127
57. Fisher, M.L., (1973b), “Optimal solution of scheduling problems using Lagrange multipliers:Part Ⅱ” In:Symposium on the Theory of Scheduling and its Applications, Springer, Berlin
58. Fox, M. and S. Smith, (1984),“ISIS-a knowledge-based system for factory scheduling”Expert System, No. 1, pp. 25~49
59. Gardiner, S.C. and J.H. Blackstone, (1994), “The evolution of theory of constrains”Industrial Management, pp. 5~6
60. Gardiner, S.C. and J.H. Blackstone, (1998), “Dynamics buffering” International Journal of Production Research, Vol. 2, pp. 333~342
61. Gen, M., Y. Tsujimura, and E. Kubota, (1994), “Sloving job shop scheduling problem using genetic algorithm” Proceedings of 16th Annals Conference on Computer and Industry Engineering, pp. 576~579
62. Gillies, A.M., (1985), Machine learning procedures for generating image domain feature detectors, Doctoral dissertation, University of Michigan, Ann Arbor
63. Glover, F., (1977), “Heuristics for integer programming using surrogate constraints”Decision Sciences, No. 8, pp. 156~166
64. Goldberg, D., (1989), Genetic algorithms in search, Optimization and Machine Learing, Addison Wesley, New York
65. Goldratt, E.M. and R. Fox, (1986), The Race:For a Competitive Edge, Croton-on Hudson, North River Press, Inc.
66. Goldratt, E.M., (1986), The Goal:A Process of Ongoing Improvement, Croton-on Hudson, North River Press, Inc.
67. Gorden, M.D., (1984), “Adaptive subject indexing in document retrieval” Dissertation Abstracts International, Vol. 45, pp. 101~121
68. Grosso, P.B., (1985), Computer simulation of genetic adaptation:parallel subcompuonent interaction in a multilocus model, Doctoral dissertation, University of Michigan, Ann Arbor
69. Grubbström, R.W. and O. Tang, (2000), “Modeling rescheduling activities in a multi-period production-inventory system” International Journal of Production Economics, Vol. 68, pp. 123~135
70. Guo, B. and Y. Nonaka, (1999),“Rescheduling and optimization of schedules considering machine failures” International Journal of Production Economics, Vol. 60, pp. 503~513
71. Gupta, M.C., Y. P. Gupta, and A. Kumar, (1993), “Minimizing flow time variance in a single machine system using genetic algorithms” European Journal of Operational Research, Vol. 70, pp. 289~303
72. Haase, K. and A. Kimms, (2000),“Lot sizing and scheduling with sequence-dependent setup costs and times and efficient rescheduling opportunities” International Journal of Production Economics, Vol. 66, pp. 159~169
73. Hariri, A. and C. Potts, (1991),“Heuristics for scheduling unrelated parallel machines”Computer and Operation Research, Vol. 18, pp. 323~331
74. Hastings, N. and C. Yeh, (1990),“Job oriented production scheduling”European Journal of Operational Research, Vol. 47, pp. 35~48
75. Hatvany, J., (1985),“Intelligence and cooperation in heterarchic manufacturing system ”Robotics and Computer-Integrated Manufacturing, Vol. 18/No. 1, pp. 101~104
76. Heikkilä, T., M. Jarviluoma, and T. Juntunen, (1996), “Holonic control for manufacturing systems: functional sesign of a manufacturing robot cell”, Integrated Computer-Aided Engineering, Vol. 4/No. 3, pp. 202~218
77. HMS Consortium, (1998), http://hms.ifw.uni- hannover.de/
78. Holland, J., (1975), Adaptation in natural and artificial system, University of Michigan Press, Ann Arbor, Michigan, pp. 1~102
79. Hou, E.S.H. and H.Y. Li, (1991), “Task scheduling for flexible manufacturing system based on genetic algorithms” IEEE International Conference on System, Man and Cybernetics, pp. 379~402
80. Huang, Y., L. Kanal and S. Tripathi, (1990), “Reactive scheduling for a single machine:problem definition” Computer Integrated Manufacturing, Vol. 3, pp. 6~12
81. Iwata, K., M. Onosato, and M. Kolike, (1994),“Random manufacturing system:a new concept of manufacturing system for production to order” Annals of the CIRP, Vol. 43/No. 1, pp. 379~383
82. Jain, A. S. and S. Meeran, (1999), “Deterministic job-shop scheduling:past, present and future”European Journal of Operational Research, Vol. 113, pp. 390~434
83. Johnson, S.M., (1954), “Optimal two- and three-stage production schedules with set-up time included”Naval Research Logistics Quarterly, Vol. 1, pp. 61~68
84. Kadar, B., L. Monostori, and E. Szelke, (1998),“An object-oriented framework for developing distributed manufacturing architecture” Journal of Manufacturing System, Vol. 9/No. 2, pp. 173~179
85. Kempf, K., R. Uzsoy, S. Smith, K. Gary, (2000),“Evaluation and comparison of production scheduling”Computers in Industry, Vol. 42, pp. 203~220
86. Kimt, Y.D., (1993), “A new branch and bound algorithm for minimizing mean tardiness in two-machine flow shop” Computer and Operation Research, Vol. 20, pp. 391~401
87. Kin, H., K. Nara and M. Gen, (1994), “A method for maintenance scheduling using GA combined with SA” Proceedings of 16th Annals Conference on Computer and Industry Engineering, pp. 447~450
88. Leon, V., S. Wu, and R. Storer, (1994),“A game-theoretic control approach for job shops in the presence of disruption” International Journal of Production Research, Vol. 32, pp. 1451~1476
89. Li, H., Z. Li, L.X. Li, B. Hu, (2000), “A production rescheduling expert simulation system”European Journal of Operational Research, Vol. 124, pp. 283~293
90. Lomnicki, Z.A., (1965), “A branch and bound algorithm for the exact solution of the three-machine scheduling problem”Operation Research Quarterly, Vol. 16/No. 1, pp. 89~100
91. Maniezzo, V., M. Dorigo, and A. Colornl, (1995), “Algodesk:an experimental comparison of eight evolutionary heuristics applied to the quadratic assignment problem”European Journal of Operational Research, Vol. 81, pp. 188~204
92. Márkus, A., T. Kis, J. Vancza, and L. Monostori, (1996),“A market approach to holonic manufacturing”, Annals of the CIRP, Vol. 45/No. 1, pp. 433~436
93. Muhlemann, A., A. Lockett, and C. Farn, (1982),“Job shop scheduling heuristics and frequency of scheduling”International Journal of Production Research, Vol. 20, pp. 227~241
94. Murata, T. and H. Ishibuchi, (1994), “Performance evaluation of genetic algorithm for flow shop scheduling problem”IEEE Transactions on Robotics and Automation, Vol. 22/No. 2, pp. 812~817
95. Murata, T., H. Ishibuchi, and H. Tanaka, (1996),“Genetic algorithms for flowshop scheduling problems”Computers & Industrial Engineering, Vol. 30/No. 4, pp. 1061~1071
96. Muth, J. and G. Thompson, (1963), Industrial Scheduling, Prentice Hall, Englewood Cliffs, NJ
97. Nakano, R. and T. Yamada, (1991), “Conventional genetic algorithms for job shop problems” Proceedings of 4th International Conference on Genetic Algorithms and Their Applications, pp. 474~479
98. Ovacilk, I.M. and R. Uzsoy, (1996), “Decomposition methods for scheduling semiconductor testing facilities”, International Journal of Flexible Manufacturing Systems, Vol. 8/No. 3, pp. 357~387
99. Overmars, A., and D. Toncich, (1996), “Hybrid FMS control architecture based on holonic principles”, International Journal of Flexible Manufacturing Systems, Vol. 8/No. 3, pp. 279~280
100. Panwalker, S.S., (1977), “A survey of scheduling rules” Operations Research, Vol. 25, pp. 45~61
101. Perry, Z.A., (1984), “Experimental study of speciation in ecological niche theory using genetic algorithms” Dissertation Abstracts International, Vol. 45, pp. 52~68
102. Pezzella, F. and E. Merelli, (2000), “A tabu search method guided by shifting bottleneck for the job shop scheduling problem”European Journal of Operational Research, Vol. 120, pp. 297~310
103. Raman, N., F. Talbot, and R. Rachamadugu, (1989a), “Due date based scheduling in a general flexible manufacturing system”Journal of Operations Management, Vol. 8, pp. 115~132
104. Raman, N., R. Rachamadugu, and F. Talbot, (1989b), “Real-time scheduling of an automated manufacturing center”European Journal of Operational Research, Vol. 40, pp. 222~242
105. Ramos, C., (1996), “A holonic approach for task scheduling in manufacturing systems”, Proceedings of the 1996 IEEE International Conference on Robotics and Automation, pp. 2511~2516
106. Reeves, C.R., (1995), “A genetic algorithms for flowshop sequencing” Computer Operations Research, Vol. 22/No. 1, pp. 5~13
107. Rendell, L.A., (1985), “Genetic plans and the probabilistic learning system:synthrsis and results” Proceedings of 1st International Conference on Genetic Algorithms and Their Applications, pp. 60~73
108. Roundy, R., W. Maxwell, Y. Herer, S. Tayur, A. Getzler, (1991),“A priced-directed approach to real—time scheduling of production operations”IIE Transactions, Vol. 23, pp. 149~160
109. Sabuncuoglu, L. and S. Karabuk, (1999), “Rescheduling frequency in an FMS with uncertain processing times and unreliable machines” Journal of Manufacturing Systems, Vol. 18/No. 4, pp. 268~283
110. Shaefer, C.G., (1985), “Directed trees methods for fitting a potential function” Proceedings of 1st International Conference on Genetic Algorithms and Their Applications, pp. 207~225
111. Singer, M. and M. Pinedo, (1998), ”A computational study of branch and bound techniques for minimizing thr total weighted tardiness in job shops” IIE Transactions, Vol. 30, pp. 109~118
112. Sousa, P. and C. Ramos, (1998), ”A dynamic scheduling holon for manufacturing orders”, Journal of Intelligent Manufacturing, Vol. 9/No. 2, pp. 107~112
113. Sridhar, J. and C. Rajendran, (1994), “A genetic algorithm for family and job scheduling in a flowline-based manufacturing cell” Proceedings of 16th Annals Conference on Computer and Industry Engineering, pp. 337~340
114. Stadnyk, I., (1987), “Schema recombination in pattern recognition problems ” Proceedings of 2nd International Conference on Genetic Algorithms and Their Applications, pp. 27~35
115. Sun, D. and L. Lin, (1994), “A dynamics job shop scheduling framework:a backward approach” International Journal of Production Research, Vol. 32, pp. 867~895
116. Tanaya, P., J. Detand, and J. Kruth, (1997), “Holonic machine controller:a study and implementation of holonic behavior to current NC controller”, Computers in Industry, Vol. 33/No. 2, pp. 323~333
117. Tharumarajah, A., A. Wells, and I. Nemes, (1996),“Comparison of the bionic fractal, and holonic manufacturing system concepts” International Journal of Computer Integrated Manufacturing, Vol. 9/No. 3, pp. 217~226
118. Valckenaers, P., F. Bonneville, and H. Brussel, (1994), “Results of the holonic control system benchmark at KULeuven”, Proceedings of the Fourth International Conference on Computer Integrated Manufacturing and Automation Technology, pp. 128~133
119. Valckenaers, P., H. Brussel, J. Whns, L. Bongaerts, P. Peeters, (1998),“Designing Holonic manufacturing system”Robotics and Computer Integrated Manufacturing, Vol. 14, pp. 455~464
120. Van den Akker, J.M., (1994), LP-based solution methods for single machine scheduling problems, Ph.D. Thesis, Eindhoven University of Technology, Enidhoven, The Nether-land
121. Warnecke, M., (1993), The fractal company-a revolution in corporate culture,Springer-Verlag, Berlin
122. Wu, S., R. Storer, and P. Chang, (1993),“One-machine rescheduling heuristics with efficiency and stability as criteria” Computer and Operation Research, Vol. 20, pp. 1~14
123. Yamamoto, M. and S. Y. Nof, (1985),“Scheduling/rescheduling in the manufacturing operating environment” International Journal of Production Research, Vol. 23, pp. 705~722
124. Yoo, W.S. and L.A. Martin-Vega, (1997),“A decomposition methodology for scheduling semiconductor test operations for number of tardy job measures” Journal of Electronics Manufacturing, Vol. 7, pp. 51~61
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top