中文參考文獻
1. 陳煌儒,“倉儲容量,存貨成本,與聯合採購:微分賽局法之應用”,1996年,黎明學報,第10卷第1期,頁109-115。2. 黃允成,“機率性需求存貨模式最佳訂購量及安全存量水準之研究”,1996年,交大管理學報,第16卷,第2期,頁19-36。3. 楊惠齡,陳茂生,“線性需求函數下有容量限制的存貨訂購策略”,1999年,工業工程學刊,第16卷,第3期,頁419-431。
4. 林清河,工業工程與管理,2000年,初版,俊傑書局。
5. 林錦鈴,“具平行供貨及折扣的流行商品之存貨模式研究”,2001年,國立雲林科技大學,工業工程與管理研究所,碩士論文。6. 黃允成,“報童模式在機率性需求與數量折扣下最適訂購量與訂購策略之研究”,2001年,工業工程學刊,第18卷,第6期,頁43-52。英文參考文獻
1. Buckley, J. J., “Possibilitic Linear programming with Triangular fuzzy Number”, Fuzzy Sets and Systems, 1988, Vol. 26, pp.135-138.
2. Banerjee, A., and Banerjee, S., “A coordinated order-up-to inventory control policy for a single supplier and multiple buyers using electronic data interchange”, International Journal of Production Economics, 1994, Vol. 35, pp.85-91.
3. Balkhi, Z. T., “On the global optimal solution to an integrated inventory system with general time varying demand, production and deterioration rates”, European Journal of Operational Research, 1999, 114, pp.29-37.
4. Chakravarty, A. K., and G. E. Martin, “An optimal join buyer-seller discount pricing model”, Computer and Operations Research, 1988, Vol. 15, No. 3, pp.271-281.
5. Chen, T. W., “Determining Profit-Maximizing Production Shipping Policies in a One-To-One Direct Shipping, Stochastic Demand Environment”, European Journal of Operational Research, 1993, Vol. 64, No. 1, pp.83-102.
6. Chen, W. and Y, Chen, “Production Inventory Problem with Random Point Demand”, Yugoslav Journal of Operations Research, 1994, vol. 4, pp.35-42.
7. Goyal, S. K., “An integrated inventory model for a single supplier-single customer problem”, International Journal of Production Research, 1976, Vol. 15, pp.107-111.
8. Grant, M. R., “EOQ and Price Break Analysis in a JIT Environment”, Production and Inventory Management Journal, 1993, Vol. 34, No. 3, pp.64-69.
9. Hadley, G. and T. M. Whitin, “An optimal final inventory model”, Management Science, 1961, 7, pp.179-183.
10. Harris, F.W., “Operations and Cost”, Factory Management Series, A. W. Shaw Co., Chicago, 1915, pp.48-52.
11. Hwang, H. S., “A study on an Inventory Model for Items with Weibull Ameliorating”, Computers and Industrial Engineering, 1997, Vol. 33, No. 3-4, pp.701-704.
12. Ilkyeong, M. and L. Suyeon, “The effects of inflation and time-value of money on an economic order quantity model with a random product life cycle”, European Journal of Operational Research, 2000, Vol. 125, pp.588-601.
13. Kohli, R. and H. Park, “A cooperative game theory model of quantity discounts”, Management Science, 1989, Vol. 35, No. 6, pp.693-707.
14. Khouja, M., “The Newsboy Problem Under Progressive Multiple Discounts”, European Journal of Operational Research, 1995, Vol. 84, No. 2, pp.458-466.
15. Khouja, M. and A. Mehrez, “A Multi-Product Constrainted Newsboy Problem with Progressive Multiple Discounts”, Computers Industrial Engineering, 1996, Vol. 30, No. 1, pp.95-101.
16. Kim, S.L., and HA, D., “Implementation of JIT purchasing: an integrated approach”, Production Planning & Control, 1997, Vol. 8, No. 2, pp.152-157.
17. Khouja, M., “Optimal ordering, discounting, and pricing in the single-period problem”, International Journal of Production Economics, 2000, Vol. 65, pp.201-216.
18. Lal, R. and R. Staelin, “An approach for developing and optimal cooperation with quantity discount considerations”, Management Science, 1984, Vol. 30, pp.1524-1539.
19. Li, S. X. and Z. Huang, “Managing buyer-seller system cooperation with quantity discount considerations”, Computer and Operations Research, 1995, Vol. 22, No. 9, pp.947-958.
20. Lu, L., “A one-vendor multi-buyer integrated inventory model”, European Journal of Operational Research, 1995, Vol. 81, pp.312-323.
21. Li, S. X., Z. Huang and A. Ashley, “ Improving buyer-seller system cooperation though inventory control”, International Journal of Production Economics, 1996, 43, pp.37-46.
22. Lau, H. and A. Lau, “Decision Models for Single-Period Products with Two Ordering Opportunities”, International Journal of Production Economics, 1998, vol. 55, Issue. 1, pp.57-70.
23. Polatoglu, L., “Optimal Order Quantity and Pricing Decisions in Single Period Inventory Systems”, International Journal of Production Economics, 1991, 2, pp.175-185.
24. Parlar, M. and Q. Wang, “Discounting decisions in a supplier-buyer relationship with a linear buyer’s demand”, IIE Transactions, 1994, Vol. 26, No. 2, pp.34-41.
25. Roy, T. K. and M. Maiti, “A fuzzy EOQ model with demand-dependent unit cost under limited storage capacity”, European Journal of Operational Research, 1997, 99, pp. 425-432.
26. Ray, J. and K. S. Chaudhuri, “An EOQ with stock-dependent demand, shortage, inflation and time discounting”, International Journal of Production Economics, 1997, 53, pp.171-180.
27. Snyder, R. D., “Inventory Control with the gamma Probability Distribution”, Department of Econometrics and Operations Research, Monash University, Clayton, 1983, Victoria 3168, Australia.
28. Shore, H., “General Approximate Solutions for Some Common Inventory Models”, Journal of the Operational Research Society, 1986, Vol. 37, No. 6, pp.619-629.
29. Urban, T. L. and R. C. Baker, “ Optimal ordering and pricing policies in a single-period environment with multivariate demand and markdowns”, European Journal of Operational Research, 1997, 103, pp.573-583.
30. Tersine, R. J. and R. L. Price, “Temporary Price Discd materials Management”, Journal of Purchasing Production and Inventory Management, 1981, pp.23-27.
31. Tersine, R. J. and R. A. Toelle, “Lot Size Determination with Quantity Discounts”, Production and Inventory Management, 1985, Vol. 26, No. 3, pp.1-23.
32. Walker, J., “Single-Period Inventory Problem with Triangular Demand Distribution.”, Journal of Operation Research Society, 1993, vol. 44, pp.725-731.
33. Wee, H. M., “Joint pricing and replenishment policy for deteriorating inventory with declining market”, International Journal of Production Economics, 1995, Vol. 40, pp.163-171.
34. Wee, H. M., “Optimal buyer-seller discount pricing and ordering policy for deteriorating Items”, The Engineering Economist, 1998, Vol. 43, No. 2, pp.151-168.