跳到主要內容

臺灣博碩士論文加值系統

(34.204.172.188) 您好!臺灣時間:2023/09/26 03:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林烜墀
論文名稱:非線性需求下具雙向折扣之報童模式最佳化決策研究
論文名稱(外文):A study of optimal decision on newsboy model under non-linear demand with dual discounts
指導教授:黃允成黃允成引用關係
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:工業管理系
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
中文關鍵詞:非線性需求函數雙向折扣數值分析演算法最佳化理論
相關次數:
  • 被引用被引用:5
  • 點閱點閱:337
  • 評分評分:
  • 下載下載:87
  • 收藏至我的研究室書目清單書目收藏:1
Khouja從線性需求函數探討銷貨價格折扣問題,本研究則以Khouja這篇文章為參考依據,將其價量關係修改成非線性需求函數,以更為符合真實情況,並且同時使用Khouja所提出折扣存在固定成本的假設,此即屬學理上的價格歧視,符合實務上有限折扣的情形,然後以最佳化理論與數值分析演算法求解最適初始訂價、最適折扣價格。除了以上所探討的銷貨折扣外,本研究更進一步將進貨折扣納入考量,並針對不同成本回收比例情況進行總利潤函數分析,期望得到具雙向折扣之完整模式,接著列舉一數值範例印證本研究之模式,最後提出結論及建議以作為後續研究之參考。
目 錄
摘要 I
Abstract II
誌謝 III
目錄 IV
圖索引 VI
表索引 VII
第壹章 緒論 1
第一節 研究背景 1
第二節 研究動機 2
第三節 研究目的 3
第四節 研究架構與流程 4
第貳章 文獻探討 8
第一節 不同需求型態之存貨模式探討 8
第二節 具數量折扣或價格折扣之存貨模式探討 10
第三節 考量買、賣方之存貨模式探討 12
第參章 數學模式推導與說明 14
第一節 數學模式假設 14
第二節 符號定義 15
第三節 具銷貨折扣之數學模式 17
第四節 具銷貨折扣與進貨折扣之數學模式 25
第肆章 範例探討 49
第一節 範例描述 49
第二節 範例分析 50
第伍章 結論與建議 57
結論 57
研究建議 59
參考文獻 60
中文參考文獻 60
英文參考文獻 61
中文參考文獻
1. 陳煌儒,“倉儲容量,存貨成本,與聯合採購:微分賽局法之應用”,1996年,黎明學報,第10卷第1期,頁109-115。
2. 黃允成,“機率性需求存貨模式最佳訂購量及安全存量水準之研究”,1996年,交大管理學報,第16卷,第2期,頁19-36。
3. 楊惠齡,陳茂生,“線性需求函數下有容量限制的存貨訂購策略”,1999年,工業工程學刊,第16卷,第3期,頁419-431。
4. 林清河,工業工程與管理,2000年,初版,俊傑書局。
5. 林錦鈴,“具平行供貨及折扣的流行商品之存貨模式研究”,2001年,國立雲林科技大學,工業工程與管理研究所,碩士論文。
6. 黃允成,“報童模式在機率性需求與數量折扣下最適訂購量與訂購策略之研究”,2001年,工業工程學刊,第18卷,第6期,頁43-52。
英文參考文獻
1. Buckley, J. J., “Possibilitic Linear programming with Triangular fuzzy Number”, Fuzzy Sets and Systems, 1988, Vol. 26, pp.135-138.
2. Banerjee, A., and Banerjee, S., “A coordinated order-up-to inventory control policy for a single supplier and multiple buyers using electronic data interchange”, International Journal of Production Economics, 1994, Vol. 35, pp.85-91.
3. Balkhi, Z. T., “On the global optimal solution to an integrated inventory system with general time varying demand, production and deterioration rates”, European Journal of Operational Research, 1999, 114, pp.29-37.
4. Chakravarty, A. K., and G. E. Martin, “An optimal join buyer-seller discount pricing model”, Computer and Operations Research, 1988, Vol. 15, No. 3, pp.271-281.
5. Chen, T. W., “Determining Profit-Maximizing Production Shipping Policies in a One-To-One Direct Shipping, Stochastic Demand Environment”, European Journal of Operational Research, 1993, Vol. 64, No. 1, pp.83-102.
6. Chen, W. and Y, Chen, “Production Inventory Problem with Random Point Demand”, Yugoslav Journal of Operations Research, 1994, vol. 4, pp.35-42.
7. Goyal, S. K., “An integrated inventory model for a single supplier-single customer problem”, International Journal of Production Research, 1976, Vol. 15, pp.107-111.
8. Grant, M. R., “EOQ and Price Break Analysis in a JIT Environment”, Production and Inventory Management Journal, 1993, Vol. 34, No. 3, pp.64-69.
9. Hadley, G. and T. M. Whitin, “An optimal final inventory model”, Management Science, 1961, 7, pp.179-183.
10. Harris, F.W., “Operations and Cost”, Factory Management Series, A. W. Shaw Co., Chicago, 1915, pp.48-52.
11. Hwang, H. S., “A study on an Inventory Model for Items with Weibull Ameliorating”, Computers and Industrial Engineering, 1997, Vol. 33, No. 3-4, pp.701-704.
12. Ilkyeong, M. and L. Suyeon, “The effects of inflation and time-value of money on an economic order quantity model with a random product life cycle”, European Journal of Operational Research, 2000, Vol. 125, pp.588-601.
13. Kohli, R. and H. Park, “A cooperative game theory model of quantity discounts”, Management Science, 1989, Vol. 35, No. 6, pp.693-707.
14. Khouja, M., “The Newsboy Problem Under Progressive Multiple Discounts”, European Journal of Operational Research, 1995, Vol. 84, No. 2, pp.458-466.
15. Khouja, M. and A. Mehrez, “A Multi-Product Constrainted Newsboy Problem with Progressive Multiple Discounts”, Computers Industrial Engineering, 1996, Vol. 30, No. 1, pp.95-101.
16. Kim, S.L., and HA, D., “Implementation of JIT purchasing: an integrated approach”, Production Planning & Control, 1997, Vol. 8, No. 2, pp.152-157.
17. Khouja, M., “Optimal ordering, discounting, and pricing in the single-period problem”, International Journal of Production Economics, 2000, Vol. 65, pp.201-216.
18. Lal, R. and R. Staelin, “An approach for developing and optimal cooperation with quantity discount considerations”, Management Science, 1984, Vol. 30, pp.1524-1539.
19. Li, S. X. and Z. Huang, “Managing buyer-seller system cooperation with quantity discount considerations”, Computer and Operations Research, 1995, Vol. 22, No. 9, pp.947-958.
20. Lu, L., “A one-vendor multi-buyer integrated inventory model”, European Journal of Operational Research, 1995, Vol. 81, pp.312-323.
21. Li, S. X., Z. Huang and A. Ashley, “ Improving buyer-seller system cooperation though inventory control”, International Journal of Production Economics, 1996, 43, pp.37-46.
22. Lau, H. and A. Lau, “Decision Models for Single-Period Products with Two Ordering Opportunities”, International Journal of Production Economics, 1998, vol. 55, Issue. 1, pp.57-70.
23. Polatoglu, L., “Optimal Order Quantity and Pricing Decisions in Single Period Inventory Systems”, International Journal of Production Economics, 1991, 2, pp.175-185.
24. Parlar, M. and Q. Wang, “Discounting decisions in a supplier-buyer relationship with a linear buyer’s demand”, IIE Transactions, 1994, Vol. 26, No. 2, pp.34-41.
25. Roy, T. K. and M. Maiti, “A fuzzy EOQ model with demand-dependent unit cost under limited storage capacity”, European Journal of Operational Research, 1997, 99, pp. 425-432.
26. Ray, J. and K. S. Chaudhuri, “An EOQ with stock-dependent demand, shortage, inflation and time discounting”, International Journal of Production Economics, 1997, 53, pp.171-180.
27. Snyder, R. D., “Inventory Control with the gamma Probability Distribution”, Department of Econometrics and Operations Research, Monash University, Clayton, 1983, Victoria 3168, Australia.
28. Shore, H., “General Approximate Solutions for Some Common Inventory Models”, Journal of the Operational Research Society, 1986, Vol. 37, No. 6, pp.619-629.
29. Urban, T. L. and R. C. Baker, “ Optimal ordering and pricing policies in a single-period environment with multivariate demand and markdowns”, European Journal of Operational Research, 1997, 103, pp.573-583.
30. Tersine, R. J. and R. L. Price, “Temporary Price Discd materials Management”, Journal of Purchasing Production and Inventory Management, 1981, pp.23-27.
31. Tersine, R. J. and R. A. Toelle, “Lot Size Determination with Quantity Discounts”, Production and Inventory Management, 1985, Vol. 26, No. 3, pp.1-23.
32. Walker, J., “Single-Period Inventory Problem with Triangular Demand Distribution.”, Journal of Operation Research Society, 1993, vol. 44, pp.725-731.
33. Wee, H. M., “Joint pricing and replenishment policy for deteriorating inventory with declining market”, International Journal of Production Economics, 1995, Vol. 40, pp.163-171.
34. Wee, H. M., “Optimal buyer-seller discount pricing and ordering policy for deteriorating Items”, The Engineering Economist, 1998, Vol. 43, No. 2, pp.151-168.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top