跳到主要內容

臺灣博碩士論文加值系統

(44.220.184.63) 您好!臺灣時間:2024/10/11 00:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:潘慧芳
研究生(外文):Pan Hui-fang
論文名稱:添加蠟質與脂肪酸對於甲基纖維素可食膜之影響研究
論文名稱(外文):Study of the Effect on Wax and Fatty Acid Addition for Methylcellulose-based Edible Films
指導教授:劉展冏劉展冏引用關係蔡碧仁
指導教授(外文):Lui Chan-chiungTsai Pi-jen
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:115
中文關鍵詞:可食膜
外文關鍵詞:edible films
相關次數:
  • 被引用被引用:6
  • 點閱點閱:541
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
可食膜與合成塑膠包材,皆可控制食品內部組成份與外界環境之間的水分、氣體、風味、脂質之遷移,達到食品保存的目的。二者最大的不同,在於可食膜具有可食性,又不影響食品原有的形狀與色澤,並且無毒性、污染等問題。在環保意識高漲的現在,可食膜極具發展空間。
本研究的目的在於將合成高分子之物性相關理論之觀念,應用在可食膜的發展上,並以再製乾酪作為貯存試驗之模型。玻璃轉移溫度(Tg)在高分子,是重要的物性指標之一,本研究中的可食膜亦屬於高分子,藉由找出薄膜之Tg,則可進一步評估氧氣通透及黏彈性行為,並尋求高水氣阻隔性之薄膜。實驗以甲基纖維素溶液,添加不同比例之脂肪酸(油酸、硬脂酸)或蠟質(石蠟、巴西棕櫚蠟)的化學修飾物,進行薄膜物性等試驗、探求貯存時間(0-9週)對薄膜物性的影響,以及薄膜包裹再製乾酪貯存(1週)時之品質變化。結果顯示,薄膜抗張強度試驗中,添加脂肪酸或蠟質之薄膜,會隨著添加比例增加而降低其抗張強度,而形變率則除油酸外,亦有隨著添加量而減少之趨勢;在通透試驗上,添加蠟質或脂肪酸皆會降低薄膜的水氣通透性(WVP),其中以添加20%石蠟之薄膜(10.38 g-mm/m2-kPa- day) 水氣通透係數最低;氧氣通透性(OP)上則反之,當蠟質或脂肪酸含量增加時,氧氣通透係數亦增加;乳化液所製成之薄膜,可見光透射率則隨著添加脂肪酸或蠟質增加而明顯降低;Tg以動態機械分析儀(DMA)量測之,隨著脂肪酸或蠟質添加量增加,Tg由原本182℃(純甲基纖維素素可食膜)降至110℃(添加20%油酸之薄膜);薄膜表面型態之觀察中發現,添加蠟質或脂肪酸確實會破壞原有的結構;經由X-ray繞射,脂質添加物在成膜過程會破壞原來甲基纖維素之結晶性。上述結果經由相關性分析,薄膜Tg與OP之間呈現負相關,結果可與薄膜表面型態之觀察、薄膜X-ray繞射結果相互印證。薄膜貯存一段時間後,水氣通透係數會隨著貯存天數增加而降低,但機械性質並無明顯而規律的變化。
保存應用試驗,不論失重、水含量、水活性、總生菌數和色澤變化上,包裹不同濃度或種類之蠟質或脂肪酸的甲基纖維素可食膜,差異並不大,但皆與未經處理之乾酪有顯著性差異。
研究結果初步顯示,應用Tg來評估薄膜之氧氣通透性等物性關連性的可行性,對於未來生物性高分子材料的使用上,可再進一步加強基礎物化性質理論之研究。
Edible films and conventional synthetic plastic packaging material, both possess the cabilities of controlling transfer on moisture, gases, aroma, lipids, etc, between food components and atmosphere. Food preservation could be accomplished by utilizing edible coatings or films. Because of its non-toxic nature, free of pollution, and maintain the appealing shape or color of foods, edible films are highly applicable due to environmental conscious.
This study was aimed to apply some concepts related to polymer physical properties, which have been proven in the field of synthetic polymers, to the development of edible films. Process cheese was also chosen for the model study of preservation test. Glass transition temperature (Tg) is one of the most important characteristics in polymer physical properties. It was proposed to evaluate the oxygen permeability and visco-elastic behavior of edible coatings through Tg. Experiments were prepared by introducing different percentages of fatty acids (oleic acid, stearic acid) or waxes (paraffin wax, carnauba wax) into methylcellulose (MC) aqueous solution. Investigations were conducted on various physical properties of MC edible films, effect of storage on aforementioned characteristics, and finally the preservation model study on process cheese.
Results showed that the tensile strength of films were reduces by the additions of fatty acids or waxes. The elongation also showed decreasing trend as the lipid contents increased, except for oleic acid. Fatty acids and waxes in this study also resulted in decreasing the water vapor permeability (WVP) of films. Opposite trend was found on the oxygen permeability (OP) which increased as the contents of lipids raised. Transparency of the films which was represented by the visible light transmittance, was also reduced by fatty acid and waxes. Tg were monitored by dynamic mechanical analyzer (DMA), and showed the decreasing trend as lipids were incorporated in MC films. SEM results, as well as X-ray diffraction, both showed the partial destruction of crystallinity on MC based material by lipids. Correlation analysis of above results indicated a negative correlation exist among elongation at break, Tg, and OP, these could be illustrated by the aids of SEM and X-ray findings WVP would gradually reduce as the MC-based films were stored for a period of time.
In preservation study, quality factors of stored process cheese such as weight loss, moisture contents, water activities, viable counts, and color change, significant difference between were detected among different formulation of MC-based films. Edible film packaging indeed exhibited improvement on process cheese compared to unwrapped samples.
Preliminary results suggested the possibility in relating OP with Tg on the development of edible films. Application of biopolymer would also benefit from these fundamental study of physical properties.
目錄
中文摘要…………………………………………………………...I
英文摘要………………………………………………………….IV
誌謝……………………………………………………………...VII
目錄…………………………………………………………….....IX
圖索引………………………………………………………..…XIV表索引…………………………………………………...……XVIII
壹、緒言……………………………………………...……………..1
貳、文獻回顧……………………………………………………….3
2.1可食膜簡論………………………………………………….3
2.1.1起源……………………………………………………3
2.1.2定義……………………………………………………3
2.1.3功能與特性……………………………………………4
2.2可食膜之種類及其應用…………………………………….7
2.2.1多醣類…………………………………………………7
2.2.2蛋白質類………………………………………………8
2.2.3脂質類…………………………………………………9
2.3可食膜之物性…………………………………………...…11
2.3.1通透性(Permeability)……………………………...…11
2.3.1.1氣體通透性(Gas permeability)………………….13
2.3.1.2水氣通透性(Water vapor permeability)…………14
2.3.2機械性質……………………………………………..15
2.3.3可見光透射率……………………………………..…16
2.3.4玻璃轉移溫度………………………………………..16
2.4甲基纖維素………………………………………………...19
2.4.1化學結構…………………………………………..…19
2.4.2物化性質……………………………………………..21
2.4.3甲基纖維素在食品工業上之應用…………………..22
2.5乾酪之介紹………………………………………………...23
2.5.1乾酪的營養價值……………………………………..24
2.5.2乾酪的保存…………………………………………..26
2.6物性分析相關理論……………………………………...…26
2.6.1動態機械分析………………………………………..26
2.6.2高分子粘彈性 ………………………………………29
參、材料與方法…………………………………………………...34
3.1實驗架構…………………………………………………...34
3.2實驗儀器………………………………………………...…36
3.3實驗藥品與材料………………………………………...…37
3.4實驗步驟與方法………………………………………...…37
3.4.1前處理………………………………………………..37
3.4.1.1甲基纖維素薄膜溶液配製……………………...37
3.4.1.2甲基纖維素可食膜之製備……………………...39
3.4.1.3薄膜貯藏試驗………………………………...…39
3.4.1.4甲基纖維素可食膜包再製乾酪之製備……...39
3.4.2物理性質之測定……………………………………..40
3.4.2.1薄膜厚度測定…………………………………...40
3.4.2.2抗張強度及形變率測定………………………...40
3.4.2.3水氣通透係數測定……………………………...41
3.4.2.4氧氣通透係數試驗……………………………...41
3.4.2.5可見光透射率試驗…………………………...…43
3.4.2.6玻璃轉移溫度試驗…………………………...…43
3.4.2.7電子顯微鏡觀察………………………………...43
3.4.2.8薄膜結晶性分析……….………………………..45
3.4.3再製乾酪品質分析…………………………………..45
3.4.3.1重量……………………………………………...45
3.4.3.2水分含量………………………………………...45
3.4.3.3水活性…………………………………………...46
3.4.3.4色澤……………………………………………...46
3.4.3.5總生菌數………………………………………...46
3.5統計分析…………………………………………………...46
肆、結果與討論………………………………………………….48
4.1甲基纖維素可食膜溶液外觀分析………………………...48
4.2 甲基纖維素可食膜物性之探討…………………………..48
4.2.1薄膜厚度試驗………………………………………..48
4.2.2甲基纖維素可食膜機械性質之探討………………..49
4.2.3通透性質探討………………………………………..54
4.2.3.1氧氣通透性……………………….……………..55
4.2.3.2水氣通透性……………………………………...57
4.2.4可見光透射率試驗…………………………………..60
4.2.5甲基纖維素可食膜之玻璃轉移溫度………………..60
4.2.7薄膜表面觀察.........………………………………….67
4.2.8薄膜結晶性分析…………………………..…………73
4.3甲基纖維素可食膜玻璃轉移溫度與物性之相關性分析...75
4.4甲基纖維素可食膜貯存過程中之物性變化……………...78
4.4.1甲基纖維素可食膜貯存後對水氣通透性的影響…78
4.4.2甲基纖維素可食膜貯存時間對機械性質的影響…78
4.5甲基纖維素可食膜應用保存試驗………………………...87
4.5.1貯存期間的重量變化………………………………87
4.5.2水分含量的變化……………………………………90
4.5.3水活性的變化……………………………………....93
4.5.4總生菌數測定………………………………………93
4.5.5色澤的變化…………………………………………95
伍、結論………………………………………………………….100
陸、參考文獻…………………………………………………….102
附錄A…………………………………………………………....112
附錄B……………………………………………………………114
作者簡介
大須賀宏,2001,可食膜研討會,食品工業發展研究所,新竹,台灣。
王志鵬,陳明娟,翁義銘,1996,以纖維素可食性膜被覆蜜餞之研究,嘉義農專學報,48: 1-8.
朱中亮,2000,可食膜氧氣阻隔,食品工業,32(7): 3-7.
李育德,顏文義,莊祖煌,1996,聚合物物性,高立圖書有限公司,台北,台灣。
林慶文,1987,乳品製造學,華香園出版社,台北,台灣。
高洁,湯烈貴,1996,纖維素科學,科學出版社,北京,中國。
陳俊成,1998,乾酪之營養與安全性,食品資訊,154: 44-49.
陳惠琳,2001,大蒜表面粗糙度與海藻酸鈉可食性薄膜塗佈研究,國立屏東科技大學食品科學系碩士班碩士學位論文,屏東,台灣。
張美珍,柳百堅,谷曉昱,2000,聚合物研究方法,中國輕工業出版社,北京,中國。
游振宗,1989,纖維高分子化學,超級科技圖書股份有限公司,台北,台灣。
劉佳鈴,2002,高水氣阻隔性可食膜的研發,食品工業,34(1): 33-44.
賴滋漢,金安兒,1979,食品加工學製品篇,精華出版社,台中,台灣。
薛敬和,1995,高分子化學,高立圖書有限公司,台北,台灣。
謝國煌,陳原振,曾勝茂,1997,動態機械分析儀之應用分析,18(4): 32-38.
韓錦鈴,1997,動態機械分析與高分子之黏彈性,化工技術,5(2): 100-107.
韓錦鈴,高聰賢,1996,動態機械分析與高分子材料之關係,化工,43(3): 56-66.
蘇和平,田志華,林慶文,1992,市售乾酪類製品品質成分之調查,中國畜牧學會會誌,21(3): 317-325.
Anker, M., Stading, M. and Hermansson, A.-M. 1999. Effect of pH and the gel state on the mechanical properties, moisture contents, and glass transition temperatures of whey protein films. Journal of Agricultural and Food Chemistry. 47: 1878-1886.
Aron, 1986. Edible film blocks moisture transfer in foods. Prepare Foods. 9: 15-16.
Arvanitoyannis, I. and Biliaderis, C. G. 1998. Physical properties of polyol-plasticized edible films made from sodium caseinate and soluble starch blends. 1998. Food Chemistry. 62(3): 333-342.
Arvanitoyannis, I. and Biliaderis, C. G. 1999. Physical properties of polyol-plasticized edible blends made of methyl cellulose and sol- uble starch. Carbohydrate Polymers. 38: 47-58.
Arvanitoyannis, I., Nakayama, A. and Aiba, S. 1998. Edible films made from hydroxypropyl starch and gelatin and plasticized by polyols and water. Carbohydrate Polymers. 36: 105-119.
Arvanitoyannis, I., Posmiadou, E. and Nakayama, A. 1996. Edible films made from sodium caseinate, starches, sugars or glycerol. Part 1. Carbohydrate Polymers 31: 179-192.
ASTM. 1988. Annual book of ASTM standards. American Society for Testing and Materials, Philadelphia, PA.
ASTM. 1989. Annual book of ASTM standards. American Society for Testing and Materials, Philadelphia, PA.
Ayranci, E. and Tunc, S. 1997. Cellulose based edible films and their effects on fresh beans and strawberries. Zeitschrift fuer Lebensmittel-Untersuchung and Forschung A. 205: 270-473.
Ayranci, E. and Tunc, S. 2001. The effect of fatty acid content on water vapor and carbon dioxide transmissions of cellulose-based edible films. Food Chemistry. 72: 231-236.
Avena-Bustillos and Krochta, J. M. 1993. Water vapor permeability of caseninate-based edible films as affected by pH, calcium cross linking and lipid content. Journal of Food Science. 58(4): 904-912.
Baldwin, E. A., Nisperos, M. O., Chen, X. and Hagenmaier, R. D. 1996. Improving storage life of cut apple and prtato with edible coating. Postharvest Biology and Technology. 9: 151-163.
Baldwin, E. A., Nisperos, M. O., Hagenmaier, R. D. and Barker, R. A. 1997. Use of lipid in coating for food products. Food Technology. 51(6): 56-63.
Chinnan, M. S. and Park, H. J. 1995. Effect of plasticizer level and temperature on water transmission of cellulose-based edible films. 1995. Journal of Food Process Engineering. 18: 417-429.
Debeaufort, F. and Voilley, A. 1995. Effect of surfactants and drying rate on barrier properties of emulsified edible films. International Journal of Food Science and Technology. 30: 183-190.
Debeaufort, F., Martin-Polo, M. and Voilley, A. 1993. Polarity, homogeneity and structure affect water vapor permeability of model edible films. Journal of Food Science. 58:426-429.
Debeaufort, F., Quezada-Gallo, J.-A., Delporte, B. and Voilley, A. 2000. Lipid hydrophobicity and physical state effect on the properties of bilayer edible films. Journal of Membrane Science. 180: 47-55.
Donhowe, J. G. and Fennema, O. 1993. The effect of plasticizers on crystallinity permeability, and mechanical properties of methylcellulose films. Journal of Food Processing and Preservation. 17: 247-257.
Dziezak, J. D. 1991. Special report: a focus on gums. Food Technology. 45(3): 116-132.
Fennema, O., Donhowe, I. G. and Kester, J. J. 1994. Lipid type and location of the relative humidity gradient influence on the barrier properties of lipids to water vapor. Journal of Food Engineering. 22: 225-239.
Finlayson, K. M. 1989. Plastic film technology: high barrier plastic films for packaging. Vol. I. Technomic Publishing Company, Inc. Lancaster, Pennsylvania USA.
Fringant, C., Rinaudo, M., Foray, M. F. and Bardet, M. 1998. Preparation of mixed esters of starch or use of an external plasticizer: two different ways to change the properties of starch acetate films. Carbohydrate Polymers. 35: 97-106.
Gallo, J.-A. Q., Debeaufort, F., Callegarin, F., Voilley, A. 2000. Lipid hydrophobicity, physical state and distribution effects on the properties of emulsion-based edible films. Journal of Membrane Science. 180:37-46.
Gontard, N., Duchez, C., Cuq, J.-L. and Guilbert, S. 1994. Edible composite films of wheat gluten and lipids: water vapor permeability and other physical properties. International Journal of Food Science and Technology. 29: 39-50.
Han, J. H. 2000. Antimicrobial food packaging. Food Technology. 54(3): 56-65.
Hagenmaier, R. D. and Baker, R. A.. 1994. Wax microemulsions and emulsions as citrus coatings. Journal of Agricultural and Food Chemistry. 42: 899-902.
Havard, C. and Harmony, M. X. 1896. Improved process of preserving meat, fowls, fish, etc. U.S. Patent No. 90,944.
Kester, J. J. and Fennema, O. 1986. Edible films and coatings: a review. Food Technology. 12: 47-59.
Kester, J. J. and Fennema, O. 1989a. An edible film of lipids and cellulose ethers: barrier properties to moisture vapor transmission and structural evaluation. Journal of Food Science. 54: 1383-1389.
Kester, J. J. and Fennema, O. 1989b. An edible film of lipids and cellulose ethers: performance on a model frozen food system. Journal of Food Science. 54: 1390-1406
.
Kester, J. J. and Fennema, O. 1989c. Resistance of lipid films to oxygen transmission. Journal of American Oil Chemistry and Society. 66: 1129-1138.
Krochta, J. M. 1990. Emulsion film on food products to control mass transfer. AICHE. New York. USA.
Krochta, J. M., Baldwin, E. A., Nisperos-Carriedo, M. 1994. Edible coating and films to improve food quality. Technomic Publishing Company, Inc. Lancaster. Pennsylvania USA.
Krochta, J. M. and Mulder-Johnston, C. D. 1997. Edible and biodegradable polymer films: challenges and opportunities. Food Technology. 51(2): 61-73.
Lawton, J. W. 1996. Effect of starch type on the properties of starch containing films. Carbohydrate Polymers. 29: 203-208.
Mannheim, C. H. and Soffer, T. 1996. Permeability of different wax coatings and their effect on citrus fruit quality. Journal of Agricultural and Food Chemistry. 44: 919-923.
Mark, J. E., Eisenberg, A., Graessley, W. W., Mandelkern, L., Koenig, J. L. 1984. Physical properties of polymers. American chemical society. Washington. DC. USA.
Martin-Polo, M., Mauguin, C. and Voilley, A. 1992a. Hydrophobic films and their efficiency against moisture transfer. 1. Influence of the film preparation technique. Journal of Agricultural and Food Chemistry. 40: 407-412.
Martin-Polo, M., Voilley, A., Blond, G., Colas, B., Mesnier, M. and Floquet, N. 1992b. Hydrophobic films and their efficiency against moisture transfer. 2. Influence of the physical state. Journal of Agricultural and Food Chemistry. 40: 413-418.
McGuire, R. G. 1997. Market quality of guavas after hot-water quarantine treatment and application of carnauba wax coating. Hort Science. 32(2): 271-274.
McHugh, T. H. and Krochta, J. M. 1994a. Water vapor permeability properties of edible whey protein-lipid emulsion films. Journal of American Oil Chemistry and Society. 71(3): 307-312.
McHugh, T. H. and Krochta, J. M. 1994b. Sorbitol- vs glycerol- plasticized whey protein edible films: integrated oxygen permeability and tensile property evaluation. Journal of Agricultural and Food Chemistry. 42(4): 841-845.
Miller, K. S. and Krochta, J. M. 1997. Oxygen and aroma barrier properties of edible films: a review. Trends in Food Science & Technology. 8: 228-237.
Miller, K. S., Upadhyaya, S. K. and Krochta, J. M. 1998. Permeability of d-Limonene in whey protein films. Journal of Food Science .63(2): 244-247.
Nelson, K. L. and Fennema, O. 1991. Methylcellulose films to prevent lipid migration in confectionery products. Journal of Food Science. 56: 504-509.
Nussinovitch, A. and Lurie, S.. 1995. Edible coatings for fruit and vegetables. Postharvest News and Information. 6(4): 53-57.
Park, H. J. 1999. Development of advanced edible coating for fruits. Trends in Food Science and Technology. 10: 254-260.
Park, H. J. and Chinnan, M. S. 1995. Gas and water vapor barrier properties of edible films from protein and cellulosic materials. Journal of Food Engineering. 25: 497-507.
Park, J.-S., Ruckenstein, E. 2001. Viscoelastic properties of plasticized methylcellulose and chemically crosslinked methylcellulose. Carbohydrate Polymers. 46: 373-381.
Pszczola, D. E.. 1999. Ingredients the get to that meat of the matter. Food Technology. 53(4): 62-65.
Psomiadou, E., Arvanitoyannis, I. and Yamamoto, N. 1996. Edible films made from natural resources; microcrystalline cellulose (MCC), methylcellulose (MC) and corn starch and polyols -Part 2. Carbohydrate Polymers. 31: 193-204.
Rico-Pena, D. C. and Torres, J. A. 1990. Edible methylcellulose -based films as moisture impermeable barriers in sundae ice cream cones. Journal of Food Science. 55: 1468-1469.
Santosa, F. X. B. and Padua, G. W. 1999. Tensile properties and water absorption of zein sheets plasticized with oleic and linoleic acids. Journal of Agricultural and Food Chemistry. 47: 2070-2074.
Sapru, V. and Labuza, T. P. 1994. Dispersed phase concentration effect on water vapor permeability in composite methyl cellulose-stearic acid edible films. Journal of Food Processing and Preservation. 18: 359-368.
Stephen, A. M. 1995. Food polysaccharides and their applications. Marcel Dekker company, Inc. New York. USA.
UKai, N., Ishibashi, S., Tsutsumi, T. and Marakami, K. 1976. Preservation of agricultural products. U.S. Patent No.3,997,674.
Yang, L. and Paulson, A. T. 2000a. Effect of lipids on mechanical and moisture barrier properties of edible gellan film. Food Research International. 33:571-578.
Yang, L. and Paulson, A. T. 2000b. Mechanical and water vapor barrier properties of edible gellan films. Food Research International. 33: 563-570.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top