跳到主要內容

臺灣博碩士論文加值系統

(34.204.181.91) 您好!臺灣時間:2023/09/29 14:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳震學
論文名稱:果膠酵素與硬心香蕉形成之探討
論文名稱(外文):Study of pectin enzymes and rubbery banana formation
指導教授:廖遠東許祥純許祥純引用關係
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:109
中文關鍵詞:硬心香蕉果膠酯酶聚半乳糖醛酸酶
外文關鍵詞:rubbery bananapectinesterasepolygalacturonase
相關次數:
  • 被引用被引用:6
  • 點閱點閱:930
  • 評分評分:
  • 下載下載:281
  • 收藏至我的研究室書目清單書目收藏:2
中文摘要
學號:M8936017
論文名稱:果膠酵素與硬心香蕉形成之探討 總頁數:109
學校名稱:國立屏東科技大學食品科學系碩士班
畢業時間及摘要別: 九十學年度第二學期碩士學位論文摘要
研究生:陳震學 指導教授:廖遠東 許祥純 博士
論文摘要內容:
香蕉後熟為一動態的過程,其中包括許多組成分與生化作用的改變,本研究主要在探討果膠酵素與硬心香蕉形成之關係,並藉由化學成分分析及特定酵素純化與活性測定進行試驗,進而分析果膠酵素是否為硬心香蕉形成關鍵因子。實驗結果綜合歸納如下:
1.化學性質分析
(1) 成份分析,硬心香蕉(45.81%)與正常香蕉(45.28%)兩者之澱粉含量並無顯著性差異;而鉀離子處理組(40.57%)與未用鉀離子處理組(45.31%)兩組間則有顯著性差異。硬心香蕉與正常香蕉(3.62%)總果膠含量有顯著性差異(P<0.05),其含量分別為:輕度硬心4.31%、中度硬心4.45%及重度硬心4.89%,且各組之間的差異隨著硬心程度的增加,有上升的趨勢,但硬心組間並無顯著性差異。且鉀離子的添加對總果膠含量無顯著影響。
(2) 酯化度分析,正常黃蕉果膠酯化度65.29%,輕度硬心65.83%,中度硬心66.38%及重度硬心67.14%,發現隨著硬心程度的增加果膠酯化度有逐漸增加的趨勢,硬心組別果膠酯化度比正常黃蕉高且有顯著性差異(p<0.05)。
2.酵素純化與活性測定
(1) 果膠酯酶活性,正常香蕉與硬心香蕉並無顯著性差異,隨著硬心程度的增加有稍上升的趨勢,但仍未有顯著性差異。鉀離子處理與否對與香蕉果膠酯酶亦無顯著影響。另於聚半乳糖醛酸酶測定方面,正常香蕉與硬心香蕉亦無差異,且鉀離子的添加對於聚半乳糖醛酸酶的酵素活性並無影響。
(2) 香蕉之果膠酯酶電泳分析發現,有一30 kDa之polypeptide,隨著硬心程度的增加呈現降解的趨勢。而聚半乳糖醛酸酶電泳分析,並未發現任何蛋白質區帶具降解現象。藉陽離子交換樹脂(CM-Sepharose)及膠體過濾層析(Sephadex G-75)與採用原態電泳輔以活性染色法,確認此一酵素為果膠酯酶且其分子量為30 kDa,pI值為9.3。
關鍵字:硬心香蕉、果膠酯酶、聚半乳糖醛酸酶
Abstract
The ripening of banana is a dynamic processing which involves many changes with component and biochemical reaction. The objective of the present study is to illustrate the relationship between pectic enzymes and occurrence of rubbery banana during ripening. The study was conducted by investigating chemical properties, specific enzyme purification and activity measurement of rubbery and normal banana fruits. Furthermore, whether the pectic enzymes play a crucial role in related to rubbery banana formation were identified. The results were summeried as follows:
1. Biochemical properties
(1) The composition analysis showed that the starch content were not significantly different between rubbery and normal banana, and potassium added group (40.57%) is significantly lower than non potassium added group (45.31%).
(2) The total pectin content was significantly different between normal and rubbery banana. There were: light rubbery (LR) 4.31%, medium rubbery (MR) 4.45%, heavy rubbery (HR) 4.89% and normal banana (N) 3.62%. The total pectin content is independent on potassium addition. The DE (degree of esterification) of banana are N: 65.29 %, LR: 65.83 %, MR: 66.38 % and HR: 67.14 % respectively. It revealed that the DE value increase with degree of rubbery. DE of rubbery banana is significantly higher than normal yellow banana (p<0.05).
2. Enzyme purification and activity measurement
(1)Pectin enzymes: Both activity of pectinesterase (3.78 ± 0.22 units) and polygalacturonase (26.67 ± 2.34) of rubbery banana were not significantly different with those of normal banana fruits.
(2) A 30 kDa polypeptide disappeared gradually with the extent of rubbiness of rubbery banana by examining protein pattern of SDS-PAGE. For polygalacturonase, no significant degradation can be observed by electrophoresis between normal and rubbery banana fruits. A consecutive purification procedure, CM-sepharose, Sephadex G-75, acidic electrophoresis and activity stain, were employed for protein identification. The purified and identified enzyme with the molecular weight of 30 kDa and pI 9.3 was identified as pectinesterase.
Key words: rubbery banana, pectinesterase, polygalacturonase
目錄
頁次
中文摘要---------------------------------------------------------------- I
英文摘要---------------------------------------------------------------- II
誌謝---------------------------------------------------------------------- V
目錄--------------------------------------------------------------------- VI
圖索引----------------------------------------------------------------- XII
表索引---------------------------------------------------------------- XIV
第一章 前言--------------------------------------------------------- 1
第二章 文獻整理--------------------------------------------------- 4
2.1 香蕉果實生長及後熟-------------------------------------------- 5
2.1.1 香蕉果實生長 ----------------------------------------------- 5
2.1.2 香蕉果實後熟因子------------------------------------------ 6
2.2 硬心香蕉----------------------------------------------------------- 7
2.2.1 硬心香蕉之發生--------------------------------------------- 7
2.2.2. 硬心香蕉發生之調查-------------------------------------- 8
2.2.3 硬心發生原因之探討--------------------------------------- 9
2.3 蛋白質生合成---------------------------------------------------- 10
2.4 細胞壁崩解與質地軟化關係---------------------------------- 11
2.5 果膠之化學組成及分子結構---------------------------------- 16
2.5.1 化學組成----------------------------------------------------- 16
2.5.2 酯化度-------------------------------------------------------- 17
2.5.3 分子結構----------------------------------------------------- 17
2.5.4 香蕉後熟之調控機制-------------------------------------- 18
2.5.5 果膠酯酶(pectinesterase, PE)與聚半乳糖醛酸酶 (polygalacturonase, PG)------------------------------------- 18
2.6 酵素萃取之最佳條件------------------------------------------- 20
2.7 果膠酯酶---------------------------------------------------------- 21
2.7.1 果膠酯酶及其作用方式----------------------------------- 21
2.7.2 果膠酯酶作用方式及基質專一性--------------------- 21
2.7.2.1 作用方式------------------------------------------------ 21
2.7.2.2 基質專一性--------------------------------------------- 23
2.7.2.3 果膠酯酶的理化性質--------------------------------- 23
2.7.3 果膠酯酶活性分析及影響果膠酯酶活性之因素----- 26
2.7.3.1 果膠酯酶活性的測定方法--------------------------- 26
2.7.3.2 影響果膠酯酶活性之因素--------------------------- 26
2.7.4 果膠酯酶之多分子型態----------------------------------- 30
2.7.5 果膠酯酶在蔬果發育過程中所扮演的角色及生理意義---------------------------------------------------------------- 33
2.7.5.1 果膠酯酶在蔬果發育過程中所扮演的角色----- 33
2.7.5.2 果膠酯酶同功酶之生理意義------------------------ 35
2.7.5.3 果膠酯酶之活性染色--------------------------------- 36
第三章 材料與方法---------------------------------------------- 38
3.1 實驗架構--------------------------------------------------------- 38
3.2 樣品來源---------------------------------------------------------- 38
3.3 採樣方法---------------------------------------------------------- 40
3.4 實驗組別---------------------------------------------------------- 40
3.5 儀器設備---------------------------------------------------------- 40
3.5.1 組成份、電泳及電泳分析設備-------------------------- 40
3.6實驗藥品----------------------------------------------------------- 41
3.6.1 組成份分析試藥-------------------------------------------- 41
3.6.2 酵素分析藥品----------------------------------------------- 42
3.6.3電泳試藥------------------------------------------------------ 42
3.6.4 酵素純化材料----------------------------------------------- 43
3.7 實驗方法---------------------------------------------------------- 42
3.7.1 組成份樣品製備與分析方法----------------------------- 43
3.7.1.1 香蕉粉末製備------------------------------------------ 43
3.7.1.2 酒精不溶物製備--------------------------------------- 43
3.7.1.3 果膠含量測定------------------------------------------ 44
3.7.1.3.1 液化------------------------------------------------- 44
3.7.1.3.2 呈色------------------------------------------------- 44
3.7.1.4 甲氧基含量測定--------------------------------------- 44
3.7.1.5 澱粉含量測定------------------------------------------ 45
3.7.1.6 Nelson還原糖測定方法------------------------------- 46
3.7.1.6.1 配藥------------------------------------------------- 46
3.7.1.6.2 還原糖測定---------------------------------------- 46
3.7.2 酵素萃取與分析-------------------------------------------- 46
3.7.2.1 聚半乳糖醛酸酶粗酵素液萃取-------------------- 46
3.7.2.2 聚半乳糖醛酸酶活性測定-------------------------- 47
3.7.2.3 蛋白質定量--------------------------------------------- 48
3.7.2.4 果膠酯酶粗酵素液萃取------------------------- 48
3.7.2.5 果膠酯酶活性測定------------------------------- 48
3.7.2.5.1 酸鹼滴定法---------------------------------------- 48
3.7.2.5.2 吸光光度法(酸鹼指示法)----------------------- 49
3.7.3 果膠酯酶抑制劑(PEI)之分離純化及活性分析-------- 50
3.7.3.1果膠酯酶抑制劑之分離純化------------------------- 50
3.7.3.2 果膠酯酶抑制劑活性分析--------------------------- 50
3.7.4 分子量測定-------------------------------------------------- 50
3.7.4.1 SDS-聚丙烯醯胺膠體電泳(SDS-polyacrylamide gel electrophoresis;SDS-PAGE)-------------------------------- 50
3.7.4.1.1 樣品之處理---------------------------------------- 50
3.7.4.1.2 電泳膠片之製備---------------------------------- 51
3.7.4.1.3 電泳之進行---------------------------------------- 51
3.7.4.1.4 膠片-玻璃紙三明治組合包紮乾燥法-------- 52
3.7.4.2 酸性原態膠體電泳------------------------------------ 52
3.7.4.2.1 試劑------------------------------------------------- 52
3.7.4.2.2 酸性膠體電泳------------------------------------- 53
3.7.4.3 果膠酯酶活性染色------------------------------------ 53
3.7.4.4 等電點之測定------------------------------------ 58
3.7.4.4.1 試劑配製------------------------------------------- 58
3.7.4.4.2 樣品處理------------------------------------------- 58
3.7.4.4.3 電泳之進行---------------------------------------- 58
3.8 管柱層析---------------------------------------------------------- 58
3.8.1 陽離子(CM-Sephaose)交換層析------------------------- 57
3.8.2 膠體過濾(Sephadex G-75)層析-------------------------- 59
3.9 統計分析---------------------------------------------------------- 59
第四章 結果與討論------------------------------------------------- 60
4.1香蕉組成份分析------------------------------------------------- 60
4.1.1各組樣品採樣數之百分比-------------------------------- 60
4.1.2硬心香蕉澱粉含量----------------------------------------- 60
4.1.3硬心香蕉總果膠含量-------------------------------------- 62
4.2硬心香蕉果膠酵素活性分析---------------------------------- 61
4.2.1 果膠酯酶活性分析---------------------------------------- 65
4.2.2 聚半乳糖醛酸酶活性分析------------------------------- 68
4.2.3果膠酯化度測定-------------------------------------------- 70
4.3 果膠酯酶之純化---------------------------------------------- 71
4.3.1硫酸銨沉澱-------------------------------------------------- 71
4.3.2 陽離子交換樹脂------------------------------------------- 72
4.3.3 果膠酯酶之聚丙烯醯胺膠體電泳---------------------- 77
4.3.4 果膠酯酶活性染色---------------------------------------- 81
4.4 香蕉之果膠酯酶等電點分析--------------------------------- 83
4.5 果膠酯酶抑制劑對香蕉果膠酯酶抑制情形---------------- 84
4.6硬心香蕉形成假說----------------------------------------------- 85
第五章 結論---------------------------------------------------------- 88
第六章 參考文獻---------------------------------------------------- 90
作者簡介-------------------------------------------------------------- 109
王秀玉。1999。硬心香蕉熟成相關酵素與物理性質之研究。國立屏東科技大學食品科學研究所碩士學位論文。
台灣青果年報。1983。台灣省青果運銷合作社。台灣,台北。
朱慶國。1980。園藝作用(一)常綠果樹。台灣農家要覽。643-661。
林正彥。1976。果膠。食品工業。8:18。
柯文慶。1985。果膠之凝膠與果醬製造。食品工業。17:12-17。
柯立祥。1980。台灣香蕉生理特性之研究。香蕉研究彙報。2:45-49。
柯立祥。1987。台灣香蕉採收後生理之研究。國立台灣大學園藝學研究所博士論文。
施名南、陳國雄、張義弘。1982。台灣青果名錄-香蕉。農林廳種苗改良繁殖場編。台灣。5-8。
侯文琪。1995。I、豌豆植物中果膠鍵結模式之研究,II、豌豆植物中果膠酯酶及果膠酸甲基化酵素之分離純化及反應機制之研究。台大農化所博士論文。
莊榮輝。1985。水稻蔗糖合成酶之研究-其純化、生物化學及免疫學研究。國立台灣大學農業化學研究所博士論文。
張為憲等編著。1996。水果與蔬菜。食品化學。507-511。
張為憲。1993。有關植物體內果膠酯酶之研究。生命科學簡訊。
7:8-12。
曾郁儒。2000。硬心香蕉與青丹蕉特性之探討。國立屏東科技
大學食品科學系碩士論文。
曾國展。2001。硬心香蕉中果膠甲酯酶抑制劑之探討。國立屏
東科技大學食品科學系碩士班碩士學位論文。
黃恩雄。1992。香蕉之催熟加工。果農合作。422:15-18。
黃新川。1988。香蕉-智者之果,營養之泉源。486:19-22。
黃新川。1997。香蕉管理與後熟生理。台灣香蕉研究所八十六年度年報。台灣。46-47。
黃新川。1998a。香蕉管理與後熟生理。台灣香蕉研究所八十七年度年報。台灣。43-44。
黃新川。趙治平。楊儒民。1991。香蕉果實硬心報告。台灣香蕉研究所。1-10。
黃耀正。1986。香蕉在成熟及後熟過程中成份及生理化學變化之研究。國立台灣大學農業化學研究所碩士論文。
楊秀美。1991。大豆芽果膠酯酶之純化及性質研究。國立台灣大學農業化學研究所碩士論文。
劉富文。1995。營養、溫度、大氣成分引起之生理障礙。果農合作。576:32-41。
蔣世超、張春梅、陳美珍。1996。氮肥施用量對北蕉生育產量與品質之影響。中國園藝。42: 68-71。
蔣世超。1997。香蕉栽培管理與後熟生理:香蕉硬心發生原因之初步探討。台灣香蕉研究所八十六年度年報。46-47。
賴盈璋。1998。愛玉子果膠酯酶所催化的轉醯基反應與愛玉子瘦果中所存在抑制劑之探討。國立台灣大學農業化學研究所碩士論文。
賴滋漢。1974。以氯化鋁沉澱法從西番果果皮回收果膠質之研究。中國園藝。20:88-94。
賴麗絨。1991。豌豆莢之烹煮過程特性及其中溫預煮硬化效應有關因素─果膠質與果膠酯酶之研究。國立台灣大學農業化學研究所碩士論文。
聯合報系。1997。台灣香蕉黃金歲月。歷史月刊。119:36-55。
羅淑卿。1995。越瓜在蒸煮過程中質地變化與果膠質化學變化之相關性及果膠分子間交互作用模式之研究。國立台灣大學農業化學研究所碩士論文。
Abu-Sarra, A. F., and Abu-Goukh, A. A. 1992. Changes in pectinesterase, polygalacturonase and cellulase activity during mango fruit ripening. Journal of Horticultural Science. 67: 561-568.
Acravante, J. U., Matsui, T., and Kitagawa, H. 1991. Changes in pectinmethylesterase, polygalacturonase and pectic substances of ethanol- and ethylene-treated bananas during ripening. Journal of the Japanese Society for Food Science and Technology. 38: 527-532.
Ahmed, A. E. and Labavitch, J. M. 1977. A simplified method for accurate determination of uronic acids. Analytical Biochemistry. 54: 484-487.
Ahmed, A. E., and Labavitch, J. M. 1980. Cell wall metabolism in ripening fruit. Plant Physiology. 65: 1009-1013.
Ali, Z. M., Ng, S.-Y., Othman, R., Goh, L.-Y., and Lazan, H. 1998. Isolation, characterization and significance of papaya b-galactanases to cell wall modification and fruit softening during ripening. Physiologia Plantarum. 104: 105-115.
Al-Jasim, H. A., and Al-Delaimy, K. S. 1972. Pectinesterase activity of some iraqi dates at different stages of maturity. Journal of the Science and Food Agriculture. 23: 915-917.
Areas, J. A. G. and Lajolo, F. M. 1981. Starch transformation during banana ripening: I-The phosphorylase and phosphatase behavior in Musa acumunata. Journal of Food Biochemistry. 5: 19-37.
Ashraf, M., Khan, N., Ahmad, M., and Elahi, M. 1981. Studies on the pectinesterase activity and some chemical constituents of some Pakistani mango varieties during storage ripening. Journal of the Agriculture and Food Chemistry. 29: 526-528.
Awad, M. 1985. Persimmon pectin methylesterase: extraction and variation during ripening. Journal of Food Science. 50: 1643-1646.
Awad, M., and Young, R. E. 1979. Postharvest variation in cellulase, polygalacturonase, and pectinmethylesterase in avocado (Presea americana Mill, cv. Fuerte) fruits in relation to respiration and ethylene production. Plant Physiology. 64: 306-308.
Axelos, M. A.V., and Thibaoult, J. F. 1991. The Chemistry of low-methoxyl pectin gelation. In” The Chemistry and Technology of Pectin”. Ed. By Walter, R. H. Academic Press, Inc. New York. Pp.109.
Baijal, M., Singh, S., Shukla, R. N., and Sanwal, G. G. 1972. Enzymes of the banana plant: optimum conditions for extraction. Phytochemistry. 11: 929-936.
Balestrieri, C., Castaldo, D., Giovane, A., Quagliuolo, L. and Servillo, L. 1990. A glycoprotein inhibitor of pectin methylesterase in kiwi fruit (Actinidia chinensis). Europe Journal of Biochemistry. 193: 183-186.
Bartley, I. M., and Knee, M. 1982. The chemistry of textural changes in fruit during storage. Food Chemistry. 9: 47-58.
Batisse, C., Fils-Lycaon, B., and Buret, M. 1994. Pectin changes in ripening cherry fruit. Journal of Food Science. 59: 389-393.
Ben-Hod, G., Nun, N. B., Tzaban, S., and Mayer, A. M. 1997. Inhibitors of polygalacturonase in calli of Orobanche aegyptiaca. Phytochemistry. 45: 1115-1121.
Blumenkrantz, N., and Asboe-Hansen, G. 1973. New method for quantitation determination of uronic acids. Analytical Biochemistry. 54: 484-489.
Brady, C. J. 1976. The pectinesterase of the pulp of the banana fruit. Australian Journal Plant Physiology. 3: 163-166.
Brady, C. J., O’Connell, P. B. H., Smydzuk, J., and Wade, N. L. 1970a. Permeability, sugar accumulation, and respiration rate in ripening banana fruits. Australian Journal of Biological Science. 23: 1143-1152.
Brady, C. J., Palmer, J. K., O’Connell, P. B. H., and Smillie, R. M. 1970b. An increases in protein synthesis during ripening of the banana fruit. Phytochemistry. 9: 1037-1047.
Brady, C. J. 1976. The pectinesterase of the pulp of the banana fruit. Australian Journal of Plant Physiology. 3: 163-172.
Buescher, R. W., and Tigchelaar, E. C. 1975. Pectinesterase, polygalacturonase, Cx-cellulase activities and softening of the rin tomato mutant. Hortscience. 10: 624-625
Castaldo, D., Giovane, A., Quagliuolo, L., and Servillo, L. 1990. A glycoprotein inhibitor of pectin methylesterase in kiwi fruit (Actinidia chinensis). Europe Journal of Biochemistry. 193: 183-187.
Castaldo, D., Lovoi, A., Quagliuolo, L., Servillo, L., Balestrieri, C., and Giovane, A. 1991. Orange juices and concentrates stabilization by a protein inhibitor of pectin methylesterase. Journal of Food Science. 56: 1632-1634.
Chang, L. W. S., Norita, L. L., and Yamamato, H. Y. 1965. Papaya pectinesterase inhibition by sucrose. Journal of Food Science. 30: 218-221.
Chang, W. H., Hwang, Y. J. and Wei, T. C. 1990. Chemical composition and enzyme activity of Taiwan Northern banana seasons. Acta Horticulturae. 275: 621-629.
Christensen, S. H. 1986. Pectins. In “Food Hydrocolloids”, Vol.III, (Glicksmann, M. ed.). CRC Press, Inc. Florida. Pp: 205
Clendennen, S. K., and May, G. D. 1997. Differential gene expression in ripening banana fruit. Plant Physiology. 115: 463-469.
Cordenunsi, B. R., and Lajolo, F. M. 1995. Starch breakdown during banana ripening:sucrose synthase and sucrose phosphte synthase. Journal of Agriculture and Food Chemistry. 43: 347-351.
Delinc’ee, H. 1976. Thin-layer isoelectric focusing of multiple forms of tomato pectinesterase. Phytochemistry. 15: 903-905.
Della-Penna, D., Lashnbrook, C. C., Toenjes, K., Giovannoni, J. J, Fischer4, R. L., and Bennett, A. B. 1991. Polygalacturonase isozymes and pectin depolymerization in transgenic rin tomato fruit. Plant Physiology. 94: 1882-1886.
Delinc’ee, H. and Radola, B. J. 1970. Some size and charge properties of tomato pectinesterase. Biochemistry and Biophysiology Acta. 214: 178-183.
Do-minguez-Puigjaner, E., Vendrell, M., and Ludevid, M. D. 1992. Differential protein accumulation in banana fruit during ripening. Plant Physiology. 98: 157-162.
Do-Nascimento, J. R. O., Cordenunsi, B. R., Lajolo, F. M., and Alcocer, M. J. C. 1997. Banana sucrose-phosphate synthase gene expression during fruit ripening. Planta. 203: 283-288.
Delinc’ee, H. and Radola, B. J. 1970. Some size and charge properties of tomato pectin methylesterase. Biochemistry Biophysiology Acta. 214: 178-181.
Delinc’ee, H. 1976. Thin-layer isoelectric focusing of multiple forms of tomato pectinesterase. Phytochemistry. 15: 903-906.
El-Zoghbi, M. 1994. Biochemical changes in some tropical fruit during ripening. Food Chemistry. 49: 33-37.
Errington, N., Tucker, G. A., and Mitchell, J. R. 1998. Effect of genetic down-regulation of polygalacturonase and pectinesterase activity on rheology and composition of tomato juice. Journal of the Science of Food and Agriculture. 76: 515-519.
Fenwick, K. M., Jarvis, M. C., Apperley, D. C., Seymour, G. B., and Bird, C. R. 1996. Polymer mobility cell walls of transgenic tomatoes with reduced polygalacturonase activity. Phytochemistry. 42: 301-307.
Fernandez, T., Fernandez, M., and Chordi, A. 1985. Evolution of proteins during ripening of the fruit of the Musa cavendishii. A study by electrophoresis and immuno-electrophoresis. Fruits. 40: 637-643.
Fils-Lycaon, B. R., Wiersma, P. A., Easwell, K. C., and Sautiere, P. 1996. A cherry protein and its gene, boundantly expressed in ripening fruit, have been identified as thaumatin-like. Plant Physiology. 111: 269-273.
Fogarty, W. M. and Kelly, C. T. 1983. Pectic enzymes. In”Microbial Enzymes and Biotechnology”. (ed.) Fogarty, W. M. Pp: 131. Applied Science Publisher, London.
Fogarty, W. M. and Ward, O. P. 1972. Pectic substances and pectinolytic enzymes. Process Biochemistry. 13-17.
Frenkel, C., Klein, I., and Dilley, D. R. 1968. Protein synthesis in relation ripening of pome fruits. Plant Physiology. 43: 1146-1153.
Gaffe, J., Tiznado, M. E., and Handa, A. K. 1997. Characterization and functional expression of a ubiquitously expressed tomato pectin methylesterase. Plant Physiology. 114: 1547-1556.
Gross, C. K., and Wallner, S. J. 1979. Degradation of cell wall polysaccharides during tomato fruit ripening. Plant Physiology. 63: 117-120.
Grierson, D., Slater, A., Sperirs, J., and Tucker, G. A. 1985. The appearance of polygalacturonase mRNA in tomatoes: one of a series of changes in gene expression during development and ripening. Planta. 163: 263-271.
Hall, L. N., Tucker, G. A., Smith, C. J. S., Watson, C. F., seymour, G. B., Bundick, Y., Boniwell, J. M., Fletcher, J. D., Ray, J. A., Schuch, W., Bird, C. R. and Grierson, D. 1993. Antisense inhibitor of pectinesterase gene expression in transgenic tomatoes. The Plant Journal. 3: 121-129.
Hegde, S., and Maness, N. O. 1996. Sugar composition of pectin and hemicellulose extracts of peach fruit during softening over two harvest seasons. Journal of the American Society for Horticultural Science. 121: 1162-1197.
Hobson, G. E. 1965. The firmness of tomato fruit in relation to polygalacturonase activity. Journal of Horticultural Science. 40: 66-72.
Hodge, J. E. and Osman, E. H. 1980. Carbohydrate. In “Food Chemistry”, Ed. By Fennema, O., Marcel Dekker, New York. Pp.41.
Huber, D. J. 1983. The role of cell wall hydrolase in fruit softening. Horticultural reviews. 5: 169-219.
Huber, D. J., and Lee, J. H. 1989. Polygalacturonase activity in ripening tomato fruit determined using pericarp discs. Journal of Experimental Botany. 40: 1331-1336.
Hultin, H. O., and Levine, A. S. 1965. Pectin methylesterase in the ripening banana. Journal of Food Science. 30: 917-921.
Huisman, M. M. H., Schols, H. A., and Voragen, A. G. J. 1996. Changes in cell wall polysaccharides from ripening olive fruits. Carbohydrate Polymers. 31: 123-133.
Jansen, E. F. Jang, R. and Bonner, J. 1960a. Binding of enzymes to avena coleoptile cell wall. Plant Physiology. 35: 567-570.
Jansen, E. F. Jang, R. and Bonner, J. 1960b. Orange pectinesterase binding and activity. Journal of Food Research. 25: 64-67.
Joslyn, M. A. 1962. The chemistry of protopectin:A critical review of historical data and recent developments. Advance Food Research. 11: 1-4.
Keegstra, K., Talmadge, K. W., Bauer, W. D., and Albersheim, P. 1973. The structure of plant cell walls. Plant Physiology. 51: 188-196.
Kertesz, Z. I. 1955. Pectic enzymes. In “Methods in Enzymology”. Vol. 1, Pp: 158. Academic Press, New York.
Klein, J. D., Hanzon, J., Irwin, P. L., Shalom, N. B., and Lurie, S. 1995. Pectin esterase activity and pectin methyl esterification in heated golden delicious apples. Phytochemistry. 39: 491-494.
King, K., Mitchell, J. R., Norton, G. and Gaygill, J. 1986. In situ de-esterification of lime pectin. Journal Science Food and Agriculture. 37: 391-393.
Knee, M., Fielding, A. H., Archer, S. A., and Laborda, F. 1975. Enzymic analysis of cell wall structures in apple fruit cortical tissue. Phytochemistry. 14: 2213-2222.
Koch, J. L., and Nevins, D. J. 1988. Tomato fruit cell wall. Plant Physiology. 91: 816-822.
Kohn, R., Heinrichova, K. and Malovikova, A. 1983. Binding of Cadmium and copper (II) ions to oligogalacturonic acids. Collection Czechoslovak Chemistry Community. 48: 1922-1924.
Kohn, R., Furda, I. and Kopec, Z. 1968. Distribution of free carboxyl groups in the pectin molecule after treatment with pectin esterase. Collection Czechoslovak Chemistry community. 33: 264-266.
Kulp, K. 1975. Carbohydrate, In “Enzymes in Food Processing”, and. Ed. (Reed, G. ed.). Pp: 107-122. Academic Press, Inc. New York.
Labib, A. A. S., El-Ashwah, F. A., Omran, H.T., and Askar, A. 1995. Heat-inactivation of mango pectinesterase and polygalacturonase. Food Chemistry. 53: 137-142.
Lee, M. and MacMillan, J. D. 1968. Mode of action of pectin enzymes. I. Purification and certain properties of tomato pectinesterase. Biochemistry. 7: 4025-4027.
Lee, C. Y., Smith, N. L. and Nelson, R. R. 1979b. Relationship between pectin methylesterase activity and the formation of methanol in concord grape juice and wine. Food Chemistry. 4: 143-146.
Leiting, V. A., and Wicker, L. 1997. Inorganic cation and polyamines moderate pectinesterase activity. Journal of Food Science. 62: 253-255.
Lineweaver, H. and Ballou, G. A. 1945. The effect of cations on the activity of alfalfa pectinesterase (pectase). Arch. Biochemistry. 6: 373-376.
MacDonnell, L. R., Jansen, E. F. and Lineweaver, H. 1945. The properties of orange pectinesterase. Arch. Biochemistry. 28: 260-263.
MacDonnell, R., Jang, R., Jansen, E. F. and Lineweaver, H. 1950. The specificity of pectinesterase from several sources with some notes on purification of orange pectinesterase. Arch. Biochemistry. 28: 260-264.
Manabe, M. 1973a. Saponification of ester derivatives of pectic acid by natsudaidai pectinesterase (Studies on the derivatives of pectic substances part V). Journal of Agriculture Chemistry Society Japanese. 47: 385-388.
Manabe, M. 1973b. Purification and properties of Citrus Natsudaidai pectinesterase. Agriculture Biology Chemistry. 37: 1487-1490.
Mao, W. W., and Kinsella, J. E. 1981. Amylose activity in banana fruit. Properties and changes in activity with ripening. Journal of Food Science. 46: 1400-1405.
Markovic, O., Heinrichova, K. and Lenkey, B. 1975. Pectolytic enzymes from banana. Collection Czechoslovak Chemistry Community. 40: 769-772.
Marriott, J. 1980. Bananas: physiology and biochemistry of storage and ripening for optimum quality. CRC Critical Review Food Science Nutrition. 13: 41-88.
Markovic, O., and Patocka, J. 1977. Action of iodine on the tomato pectinesterase. Experientia. 33: 711-713.
McCready, R. M. and Seegmiller, C. G. 1954. Action of pectic enzymes on oligogalacturonic acids and some of their derivatives. Arch. Biochemistry Biophysiology. 50: 440-444.
Mcfeeter, R. F. and Armstrong, S. A. 1984. Measurement of pectin methylation in plant cell walls. Analytical Biochemistry. 139: 212-215.
McLellan, T. 1982. Electrophoresis buffer for polyacrylamide gels ar various pH. Analytical Biochemistry. 126: 94-98.
Medina-Suarez, R., Manning, K., Fletcher, J., Aked, J., Bird, C. R., and Seymour, G. B. 1997. Gene expression in the pulp of ripening bananas. Plant Physiology. 115: 453-461.
Mitcham, E. J., and McDonald, R. E. 1993. Changes in grapefruit flavedo cell wall noncellulosic neutral sugar composition. Phytochemistry. 34: 1235-1239.
Mitcham, E. J., Gross, K. C., and Ng, T. J. 1989. Tomato fruit cell wall synthesis during development and senescence. Plant Physiology. 89: 477-481.
Muda, P., Seymour, G. B., Errington, N., and Tucker, G. A. 1995. Compositional changes in cell wall polymers during mango fruit ripening. Carbohydrate Polymers. 26: 255-260.
Nelson, N. 1944. Photometry adaptaion of the Somogyi method for the determination of glucose. Journal Biology Chemistry. 153: 375-390.
Nogata, Y., Ohta, H., and Vorgen, A. G. J. 1993. Polygalacturonase in strawberry fruit. Phytochemistry. 34: 617-620.
Northcote, D. H. 1958. The cell wall of higher plants: Their composition, structure and growth. Biology Review: 33: 53-58.
Palmer, J. K. and Roberts, J. B. 1967. Inhibition of banana polypheniloxidase by 2-Mercaptobenzothiazole. Science. 157: 200-201.
Pathak, N., and Sanwal, G. G. 1998. Multiple forms of polygalacturonase from banana fruit. Phytochemistry. 48: 249-255.
Paull, R. E., Gross, K., and Qiu, Y. 1999. Changes in papaya cell walls during fruit ripening. Postharvest Biology and Technology. 16: 79-89.
Pilnik, W. and Rombouts, F. M. 1981. Pectic enzymes. In “Enzymes and Food Processing”. (ed.) Brich, G. G., Blakebrough, N. and Parker, K. Pp: 105. Applied Science Publisher, London.
Pressey. R. 1984. Role of pectinesterase in pH-dependent interaction between pea cell wall polymers. Plant Physiology. 76: 547-550.
Pressey, R. 1986. Polygalacturonases in higher plants. In: Chemistry and Function of Pectins. 157-174.
Pressey, R. 1996. Polygalacturonase inhibitors in bean pods. Phytochemistry. 42: 1267-1270.
Pressey, R., Hinton, D. M., and Avants, J. K. 1971. Development of polygalacturonase activity and solubilization of pectin in peaches during ripening. Journal of Food Science. 36: 1070-1073.
Priya-Sethu, K. M., Prabha, T. N., and Tharanathan, R. N. 1996. Post-harvest biochemical changes associated with the softening phenomenon in capsicum annuum fruit. Phytochemistry. 42: 961-966.
Proctor, A., and Peng, L. C. 1989. Pectin transitions during blueberry fruit development and ripening. Journal of Food Science. 54: 385-387.
Reisfeld, R. A., Lewis, U. J. and Williams, D. E. 1962. Disk electrophoresis of basic protein and peptide on polyacrylamide gels. Nature. 195: 281-284.
Rexiva-benkova, L. and Markovic, O. 1976. Pectic enzymes. In “Advancesin Carbohydrate Chemistry and Biochemistry” (ed.) Tipson, R. S. and Horton, D. Vol. 33. Pp: 323. Academic Press, New York.
Sacher, J. A. 1962. Relations between changes in membrane permeability and the climacteric in banana and avocado. Nature. 195: 577-578.
Sacher, J. A. 1966. Permeability characteristics and amino acid incorporation during senescence (ripening) of banana tissue. Plant Physiology. 41: 701-708.
Schols, H. A., Vierhuis, E., Bakx, E. J., and voragen, G. J. 1995. Different populations of pectic hairy regions occur in apple cell wall. Carbohydrate Polymers. 275: 343-360.
Schuch, W., Bird, C. R., Ray, J., Smith, C. J. S., Watson, C. F., Morris, P. C., Gray, J. E., Arnold, C. A., Seymour, G. B., Tucker, G. A., and Grierson, D. 1989. Control and manipulation of gene expression during tomato fruit ripening. Plant molecular Biology. 13:303-311.
Seymour, G. B., Banana. In “ Biochemistry of fruit Ripening ”,eds. Seymour, G. B., Taylor, J. E., and Tucker, G. A. 1993. Pp: 85-103. Chapman & Hall. Landon.
Seymour, T. A., Preston, J. F., Wicker, L., Lindsay, J. A. and Marshall, M. R. 1991a. Stability of pectinesterases of marsh white grapefruit pulp. Journal of Agriculture Food Chemistry. 39: 1075-1078.
Seymour, T. A., Preston, J. F., Wicker, L., Lindsay, J. A. and Marshall, M. R. 1991b. Purification and properties of pectinesterase of marsh white grapefruit pulp. Journal of Agriculture Food Chemistry. 39: 1080-1084.
Sitrit, Y., and Bennett, A. B. 1998. Regulation of tomato fruit polygalacturonase mRNA accumulation by ethylene: A re-examination. Plant Physiology. 116: 1145-1150.
Solms, J. and Deuel, H. 1955. Uber den mechanismus der enzymatischen verseifung von pektinstoffen. Helv. Chim. Acta. 38: 321-324.
Srivastava, M. K. and Dwivedi, U. N. 2000. Delayed ripening of banana fruit by salicylic acid. Plant science. 158: 87-96.
Sterling, C. 1970. Crystal-structure of ruthenium red and stereochemistry of its pectic stain. American Journal Botany. 57: 172-175.
Stolle-Smits, T., Beekhuizen, J. G., Dijk, C, V., Voragen, A. G. J., and Recourt, K. 1995. Cell wall dissolution during industrial processing of green beans (Phaseolus vulfaris L.) Journal of Agriculture and Food Chemistry. 43: 2480-2486.
Stover, R. H. and Simmonds, N. W. 1987. Chapter 18. Fruit physiology, biochemistry and nutritional values. In “Banana” Third Eds. Longman Press. New York. Pp: 386-395.
Taked, Y., Yoza, K. I., Nogata, Y., Kusumoto, K. T., Voragen, A. G. J. 1997. Putrescine accumulation in banana fruit with ripening during storage. Phytochemistry. 46: 57-60.
Tatachari, Y. 1973. A note on banana research station. Kovur. ICAR. Workshop on Fruit Research Jan. 20-25.
Terra, N. N., Garcia, E., and Lajolo, F. M. 1983. Starch-sugar transformation during banana ripening:the behaviour of UDP-glucose pyrophosphorylase, sucrose synthetase and invertase. Journal of Food Science. 48: 1097-1100.
Thakur, B. R., Singh, R. K., Timan, D. M., and Handa, A. K. 1996. Tomato product quality from transgenic fruits with reducted pectin methylesterase. Journal of Food Science. 61: 85-87.
Themen, A. P. N., Tucker, G. A., and Grierson, D. 1982. Degradation of isolated tomato cell walls by purified polygalacturonase in vitro. Plant Physiology. 69: 122-124.
Tieman, D. M., Harriman, R. W., Ramamoham, G., and Handa, A. K. 1992. An antisense pectin methylesterase gene alters pectin chemistry and soluble solids in tomato fruit. The Plant Cell. 4: 667-679.
Walkinshaw, M. D., and Arnott, S. 1981a. Conformations and interactions of pectins. I. X-ray diffraction analysis of sodium pectate in neutral and acidified forms. Journal of Molecular Biology 153: 1055-1057.
Van-Buren, J. P. 1979. The chemistry of texture in fruits and vegetables. Journal of Texture Studies. 10: 1-23.
Von Loesecke, H. W. 1950. Bananas: chemistry, physiology, and technology. Interscience publishers. New York. 39-66.
Venkatesam, C. and Rangacharlu, V. S. (1964) Study on the pruning of “malebub” in banana. Indian Journal Hortortual. 21: 232-234.
Wegrzyn, T. F., and MacRae, E. A. 1989. Objective measure of banana pulp colour. International Journal of Food Science and Technology. 24: 553-558.
Wu, Q., Szakacs-Dobozi, M., Hemmat, M., and Hrazdina, G. 1993. Endopolygalacturonase in apples (Malus domestica) and its expression during fruit ripening. Plant Physiology. 102: 219-225.
Zimmerman, R. E. 1978. A rapid assay for pectinesterase activity which can be used as a prescreen for pectinesterase inhibitors. Analytical Biochemistry. 85: 219-212.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top