跳到主要內容

臺灣博碩士論文加值系統

(3.239.4.127) 您好!臺灣時間:2022/08/16 02:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡錦燕
研究生(外文):Chin-Yen Tsai
論文名稱:小米酒製造過程中化學組成變化
論文名稱(外文):Studies on some chemical composition changes during millet wine processing.
指導教授:黃卓治黃卓治引用關係
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:99
中文關鍵詞:發酵乳酸乙酯小米酒
外文關鍵詞:fermentationethyl lactatemillet wine
相關次數:
  • 被引用被引用:8
  • 點閱點閱:3601
  • 評分評分:
  • 下載下載:602
  • 收藏至我的研究室書目清單書目收藏:1
原住民在傳統釀酒,係用「白麴」當菌種,製作小米酒。小米發酵過程中,發酵液中以黴菌繁殖最快,於液態發酵第5天達最高。酵母菌於液態發酵第3天即明顯地快速生長,至第7天達高峰。由其發酵液中可分離出Saccharomyces cerevisiae, Candida holmiie , Lactobacillus brevis及Pediococcus pentosaceus等四類菌株,而S. cerevisiae為用於發酵乙醇之酵母菌。小米酒釀造過程中,酒精濃度隨著發酵時間而增加,在第30天其酒精濃度約為13.5﹪,至一年酒精濃度達約14﹪,但在第30天已無法分離得到菌種。小米酒發酵初期,其總酸度逐漸增加,推測是來自於根黴、酵母菌之代謝產物,亦可能由乳酸菌所產之乳酸所影響。小米酒發酵過程中,glutamic acid為酵母菌利用氮之主要來源,且glutamic acid亦會生合成lysine, arginine及threonine。酒類熟成期為香氣形成之重要關鍵,胺基酸代謝可產生高級醇,isoleucine及leucine可經由生合成作用,而成高級醇分別為2-methyl-1 butanol及3-methyl-1 butanol。乳酸加乙醇縮合可生合成乳酸乙酯(ethyl lactate),經由GC、GC-MS之分析,證實乳酸乙酯為小米酒中之主要香氣成分。
Millet wine produced following the aborigine procedure was found to use so-called “white-cake” as a fungus source. During the fermentation period, mold grew quickly and had a peak quantity at 5 days after inoculation. Yeast also developed quickly after 3 days’ fermentation and had a peak quantity at after 7 days’ fermentation. From millet fermentation slurry, Saccharomyces cerevisiae, Candida holmiie , Lactobacillus brevis and Pediococcus pentosacus were isolated and characterized. Saccharomyces cerevisiae is believed to produce ethanol. During the early stage of millet wine making, the total titratible acid increased with increasing the fermentation period. Ethanol concentration in the millet wine was 13.5﹪,and increased to 14.0﹪after one year’s storge. Glutamic acid was used as a major nitrogen source during fermentation, and part of them were used to synthesize lysine, arginine, and threonine. Higher alcohols, 3-methyl-1-butanol and 2-methyl-1-butanol were found to be derived from isoleucine and leucine respectively. Ethyl lactate was characterized by using GC or GC-MS. The formation of ethyl lactate was ascribed to the existence of large amount of ethanol and lactic acid in millet wine.
目錄
頁次
中文摘要…………………………………………………………Ⅰ
英文摘要…………………………………………………………Ⅲ
誌謝………………………………………………………………Ⅳ
目錄………………………………………………………………Ⅵ
表索引…………………………………………………………Ⅸ
圖索引…………………………………………………………Ⅹ
第一章 前言……………………………………………………1
第二章 文獻整理………………………………………………3
2.1 小米的特性……………………………………………3
2.2 米糧之釀酒方式………………………………………5
2.3 製麴方式………………………………………………8
2.3.1熟麴─日本製麴……………………………………10
2.3.2生麴─中國製麴……………………………………11
2.3.3大麴…………………………………………………14
2.3.4小麴…………………………………………………15
2.4 影響”麴”品質之因素…………………………………16
2.4.1水分與溫度的關係…………………………………18
2.4.2水分與產酸的關係…………………………………19
2.5 製酒發酵過程之成分變化……………………………20
2.5.1風味物質…………………………………………24
2.5.2酒中游離胺基酸的變化……………………………32
2.6酒儲藏中香氣成分之變化………...……………………34
2.6.1貯存之作用…………………………………………34
2.7 乳酸菌接種對酒質之影響……………………………38
2.8 小米酒之製作…………………………………………39
第三章 材料與方法……………………………………………41
3.1 實驗藥品………………………………………………41
3.2 培養基及培養液………………………………………42
3.3 小米酒之採樣…………………………………43
3.4 實驗與方法……………………………………………44
3.4.1採樣微生物之培養…………………………………44
3.4.2菌種鑑定……………………………………………45
3.4.3酸度測定……………………………………………46
3.4.4酒精含量之測定……………………………………47
3.4.5胺基酸測定…………………………………………48
3.4.6酯類、醇類之檢測…………………………………50
第四章 結果與討論……………………………………………52
4.1 菌種生長………………………………………………52
4.2 菌種鑑定………………………………………………54
4.3 可滴定酸變化…………………………………………55
4.4 酒精含量………………………………………………56
4.5 胺基酸之測定…………………………………………57
4.5.1發酵前期胺基酸之變化……………………………57
4.5.2熟成時胺基酸之變化………………………………59
4.6醇類、酯類之探討………………………………………60
第五章 結論……………………………………………………65
第六章 參考文獻………………………………………………91
表索引
頁次
表一 Y1鑑定結果…………………………………………….67
表二 Y2鑑定結果………………………………………………68
表三 B1鑑定結果………………………………………………69
表四 B2鑑定結果……………………………………………….70
圖索引
頁次
圖一 阿米洛法(Amylo)米酒製造流程…………………………6
圖二 改良在來法米酒製造流程……………………………7
圖三 製麴之流程………………………………………………9
圖四 酒中主要成分之生化合成途徑………………………..21
圖五 酵母菌產生高級醇之途徑…………………………..27
圖六 胺基酸生成高級醇反應式………………………………28
圖七 酒中酯類生成反應式………………………………29
圖八 小米酒製造流程………………………………………..40
圖九 小米固體發酵……………………………………………43
圖十 小米固體發酵後加水發酵………………………………43
圖十一 小米酒發酵期間,徽菌(Mold)生長柱狀圖…………71
圖十二 小米酒發酵期間,酵母菌(Yeast)生長柱狀圖………72
圖十三 小米酒發酵期間,細菌(Bacteria)生長柱狀圖………73
圖十四 小米酒發酵期間,乳酸菌(Lactobacillus)生長柱狀…74
圖十五 小米酒發酵中酸度之變化……………………………75
圖十六 小米酒發酵中酒精濃度變化…………………………76
圖十七 小米總胺基酸成份……………………………………77
圖十八 小米酒發酵期間游離胺基酸成份……………………78
圖十九 小米酒發酵階段總胺基酸與游離胺基酸之變化……79
圖二十 Proline由Glutamic acid生合成途徑………………80
圖二十一 Methionine, theronine, Lysine代謝生合成途徑…81
圖二十二 小米酒熟成時,游離胺基酸之變化…………………82
圖二十三 Isoleucine valine cysteine 在S.cerevisiae 之生合成途徑……………………………………………………83
圖-二十四 小米酒GC圖譜……………………………………84
圖二十五 Leucine isoleucine生合成高級醇途徑…………85
圖二十六 GC-MS測得乳酸乙酯之斷片圖……………………86
圖二十七 乳酸乙酯結構之斷片圖……………………………87
圖二十八 乳酸乙酯生合成途徑……………………………88
圖二十九 小米酒乳酸乙酯生成量……………………………89
圖三十 Phenylethyl acetate生合成途徑………………………90
參考文獻
伊藤 清、蓮尾 徹夫與宮野 信之,1988。β-環狀糊精對清酒香味之保存。釀協。83(3):201~204。
伊藤 寬,1994。酒麴製造。日釀協誌89:(12)948~953。
李群輝、闕信玉,1988。高效液相層析法測定啤酒釀造過程中之游離胺基酸。酒類試驗所研究年報。pp.31~55。
林仁吾、黃雋、徐明國,1997。蓮花白酒之研製。酒廠研究年報。pp.49~66。
林仁吾、徐明國、黃雋、黃及時與彭文正,2000。小米酒汁研製。台灣省酒廠研究年報。pp.107~122。
林源義、黃玉蓮,1992。利用質譜檢測器鑑定蒸餾酒中之香氣成分(一)高梁酒類香氣成分之鑑定。酒類試驗所研究年報。pp.51~62。
林讚峰,1995。發酵與風味品質。製酒科技專論彙編,公賣局專刊。pp.23~40。
林讚峰,1999。清酒麴之製造與品質管理。清酒製造技術。pp.19~38。
胡鳳綬,1993。酒中脂類香氣成份。製酒科技專論彙編。15:311~315。
張照輝,2001。中國白酒中風味之探討。製酒科技專論彙編。pp.218~228。
歐陽港生,1998。以科學眼看中國傳統蒸餾酒製造技術。酒類試驗所研究年報。pp.154~161。
歐陽港生,1999。中式白酒之儲存、陳化與促熟。製酒類科技專論彙編,公賣局專刊。pp.49~88。
蘇鴻俊,1990。發酵工業:發酵之工程,復文書局。pp.121~172。
Antonelli, A.,Castellari, L.,Zambonelli, C. and Carnacini, 1999.A., Yeast influence on volatile composition of wines. J. Agri. Food Chem.. 47 (3):1139~1144.
Begona C.M., Juan J. M., Zea L., Lourdes M., and Manuel M., 1999. Response of the aroma fraction in sherry wines subjected to accelerated biological aging. J. Agric. Food Chem. 47: 3297~3302.
Belen A., Julian G. and Carmen A., 1998. Sedimentation clarification of viura musts. Utilization of amino acids during fermentation. Food Chemistry. 63 (2):191~197.
Belen, A., Carmen, A., Manuel, C. and Julian, G., 1996. Changes in free amino acid concentration during stabilization and aging of wines derived from garnacha and viura musts clarified by static sedimentation. Food Control. 7 (3):157~163.
Cachot, T., Muller, M.and Pons, M.N., 1991.Kinetics of volatile metabolites during alcoholic fermentation of cane molasses by Saccharomyces cerevisiae. Applied Microbiology and Biotech.. 35 (4):450∼454.
Diaz-Reganon, D.H., Salinas, R., Masoud, T. and Alonso, G., 1998. Adsorption-thermal desorption-gas chromatography applied to volatile compounds of Madrid region wines. J. Food Composition & Analysis .11 (1):54~69.
Eden, A., Nedervelde, L. van., Drukker, M.,Benvenisty, N. and Debourg, A., 2001.Involvement of branched-chain amino acid aminotransferases in the productionof fusel alcohols during fermentation in yeast. Applied Microbiology and Biotech.. 55 (3):296~300.
Elizabeth, V. and Susan, E. E., 2001. Monitoring ester formation in grape juice fermentation using solid phase microextraction coupled with gas chromatography-mass spectrometry. J. Agri. Food Agric. 49:589~595.
Eva, A., Christer, L., Gunnar ,L., Cleas, N. and Lena, G., 1996. Influence of the Nitrogen Source on Saccharomyces cerevisiae Anaerobic Growth and Product Formation. J .Agric. Food Chem. 62:3187~3195.
Hayasaka,Y. and Bartowsky, E. J., 1999.Analysis of diacetyl in wine using solid-phase microextraction combined with gas chromatography-mass spectrometry. J. Agric. Food Chem. 47:612~617.
Jorgen, H. and Morten, C.K., 1996. Modification of biochemical pathways in industrial yeasts. J. Biotech. 49:1~12.
Juan, C., Mauricio, E. V., Carmen , M. and Jose , M. O., 2001. Changes in nitrogen compounds in must and wine during fermentation and biological aging by flor yeasts. J. Agric. Food Chem. 49: 3310~3315.
Killian, E. and Ough ,C.S., 1979. Fermentation esters-formation and retention as affected by fermentation temperture. Am. J. Enol. Vitic. 30 (4):301~305.
Lamikanra, O., 1993. Change in organic acid composition during fermentation and aging of muscadine wine . Am. J. Enol. Vitic. 44:349.
Lamikanra, O., Grimm, C.C. and Inyang, I.D., 1995. Formation and occurrence of flavor components in Noble muscadine wine. Food Chem. 56:373~376.
Lilly, M., Lambrechts, M.G. and Pretorius, I.S., 2000. Effect of increased yeast alcohol acetyl transferase activity on flavor profiles of wine and distillates. Apple. Environ. Microbiol. 66:744~753.
Lurton,L., Snakkers, G.,Roulland, C.and Galy, B., 1995.Influence of the fermentation yeast strain on the composition of wine spirits. J. Sci. Food Agric.67:485~497.
Mauricio, J.C., Moreno,J. ,Zea,L. , Ortega, J.M. and Medina, M., 1997.The effects of grape must fermentation conditions on volatile alcohols and esters formed by Saccharomyces cervisiae. J. Sci. Food Agric.75:155~160.
Morales, M.L., Tesfaye, W., Garcia-Parrilla, M.C., Casas, J.A. and Troncoso, A.M., 2001. Sherry wine vinegar: physicochemical changes during the acetification process. J. Sci. Food Agri. 81 (7):611-619.
Nelson, R., Acree, T.E. and Butts, R.M., 1978. Isolation and identification of volatiles from Catawba wine. J. Agric. Food Chem. 26:1188~1190.
Nordstrom, K.,1964. Studies on the formation of volatile esters in fermentation and Brewer’s yeast. Svensk Kem .Tidskr. 76:510~543.
Ramey, D.D. and Ough, C.S., 1980. Volatile ester hydrolysis or formation during storage of model solutions and wines. J. Agric. Food Chem. 28:928~934.
Romano, P. and Suzzi, G., 1993. Higher alcohol and acetoin production by Zygosaccharomyces wine yeasts. J. Applied Bacteriology . 75 (6) :541~545.
Romano, P., Suzzi, G., Comi, G. and Zironi, R., 1992. Higher alcohol and acetic acid production by apiculate wine yeasts. J. Applied Bacteriology . 73 (2) :126~130.
Romano, P., Suzzi, G., Comi, G., Zironi, R. and Maifreni, M., 1997. Glycerol and other fermentation products of apiculate wine yeast. J. Appl. Microbiol. 82:615~618.
Romano, P., Suzzi, G., Zironi, R. and Comi, G., 1993. Biometric study of acetoin production in Hanseniaspora guilliermondii and Kloeckera apiculata. Appl. Environ. Microbiol. 59:1838~1841.
Schure, E.G., Flikweert, M.T., Dijken, J.P., Pronk, J.T. and Verrips, C.T., 1998. Pyruvate decarboxylase catalyzes decarboxylation of branched-chain 2-oxo acids but is not essential for fusel alcohol production by Saccharomyces cerevisiae. Applied and Environmental Microbiology. 64 (4):1303~1307.
Sergi, M., Jose-Vicente, G., Isabel, P. and Sergi, F., 1999. Improvement of volatile composition of wines by controlled addition of malolatic bacteria. Food Res.Intern. 32:491~496.
Takatoshi, T., Marie-Laure M. and Denis D., 1998. Development of a method for analyzing the volatile thiols involved in the characteristic aroma of wines made from Vitis viniferal. cv. Sauvigenon blane. J. Agric. Food Chem. 46: 1044~1048.
Tressl, R. and Albrecht, W., 1986. Biogenesis of aroma compounds through acyl pathways. In ”Progress in flavour research symposium” , American Chemical Society. pp.114~133.
Van der Sluiset, C., Wolken, W.A.M., Giuseppin, M.L.F., Tramper, J. and Wijffels, R. H., 2000. Effect of threonine, cystathionine and the branched —chain amino acids on the metabolism of Zygosaccharomyces rouxii. Enzyme and Microbial Technol. 26:292~300.
Virgina, R., Jose, V.G., Francisco, P. and Paloma, M., 2001. Sutdies on acetate ester production by non-Saccharomyces wine yeasts.Intern. J. Food. Micro. 70:283~289.
Yorgos, K., Alain, R., Alain, B. and Raymond, B., 2000. Differentiation of the aromas of merlot and cabernet sauvignon wines using sensory and instrumental analysis. J. Agric. Food Chem. 48: 5383~5388.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top