跳到主要內容

臺灣博碩士論文加值系統

(44.210.21.70) 您好!臺灣時間:2022/08/11 17:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林佩儀
論文名稱:肉雞飼糧中鈣、磷含量影響植酸酶添加效果之研究
論文名稱(外文):The effect of phytase supplementation on the performance of broilers fed diets with different levels of calcium and available phosphorus
指導教授:謝豪晃謝豪晃引用關係
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:畜產系
學門:農業科學學門
學類:畜牧學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:105
中文關鍵詞:肉雞植酸酶
相關次數:
  • 被引用被引用:2
  • 點閱點閱:613
  • 評分評分:
  • 下載下載:131
  • 收藏至我的研究室書目清單書目收藏:0
本試驗主要目的在探討肉雞飼糧中鈣、磷含量對添加植酸酶,最佳之作用效果。試驗雛雞均使用購自商業孵化場一日齡愛拔益加肉雛雞240隻,公母混養,採4處理3重複之完全逢機設計,進行為期六週之生長試驗。1-3週齡為生長前期,4-6週齡為生長後期,飼料與飲水採任食。分別於1日齡、3和6週齡時個別秤重,並記錄飼料採食量。試驗一:對照組為基礎飼糧,生長前期之代謝能為3054 kcal/kg,粗蛋白質為21%,總磷含量為0.66%(有效磷0.40%),鈣含量為0.87%;生長後期之代謝能為3049 kcal/kg,粗蛋白質19%,總磷含量為0.65%(有效磷0.40%),鈣含量為0.87%。其餘三處理組分別調整有效磷含量為0.40%、0.25%以及0.10%,並同時添加植酸酶600 FTU/kg。試驗二:對照組為基礎飼糧,生長前期之代謝能為3113 kcal/kg,粗蛋白質為21%,總磷含量為0.50%(有效磷0.25%),鈣含量為0.84%;生長後期代謝能為3093 kcal/kg,粗蛋白質為19%,總磷含量為0.49%(有效磷0.25%),鈣含量為0.84%。其餘三處理組分別為鈣含量1.10%、0.84%及0.61%(鈣/磷比為2.2、1.7、1.2),並同時添加植酸酶600 FTU/kg。
38日齡時,每處理隨機取6隻雞,進行翼下採血,以備分析血漿中鈣、磷濃度以及鹼性磷酸酶之活性。飼養試驗結束時,每處理隨機留取6隻雞,共24隻,進行為期五天糞便收集。結束時全部肉雞予以屠宰,取其左右脛骨,作為骨骼內灰分、鈣和磷含量之分析。
結果顯示,試驗一:在1-3週齡時肉雞之飼料採食量,以及4-6週齡、1-6週齡之體增重和飼料利用效率,其對照組與有效磷為0.40%、0.25%時且添加植酸酶處理,三者間並無顯著差異,但當有效磷降低至0.10%時,雖然添加植酸酶,其飼料採食量、體增重與飼料利用效率,比其他三個處理組較差(P<0.05)。在4-6週齡,體增重以有效磷0.40%並添加植酸酶處理組為最佳(P<0.05),以有效磷0.10%且添加植酸酶處理組表現最差(P<0.05);在飼料利用效率方面則四個處理之間無顯著差異。當有效磷下降至0.10%且添加植酸酶處理時,大部分的肉雞有腳弱的情形,在生長前期(1-3週齡)不太明顯,但在生長後期(4-6週齡),不僅腳弱情形增加,且死亡隻數亦有增加情形,由此得知,將有效磷降低至0.10%時,即使添加植酸酶處理,其所提供的磷,亦無法滿足肉雞正常生長所需。糞磷排泄量以有效磷降至0.10%並添加植酸酶者為最低(P<0.05);血液性狀方面,有效磷為0.10%並添加植酸酶處理組,其血鈣含量最高而血磷最低,鹼性磷酸酶活性在各處理組間無顯著差異(P>0.05);脛骨強度以及屈曲力矩則以有效磷0.25%添加植酸酶處理組顯著較佳(P<0.05)。
試驗二:在相同鈣含量0.84%飼糧中添加植酸酶時,與對照組相較,在1-3、4-6及1-6週齡,對於採食量、體增重以及飼料利用效率有較佳之趨勢,但並無顯著差異。在1-3週齡時,添加植酸酶的處理組中,鈣磷比從2.2:1降至1.7:1以及1.2:1時,體增重分別有顯著增加(P<0.05)。4-6及1-6週齡之採食量、體增重以及飼料利用效率,在四個處理之間皆無顯著差異。飼糧中添加植酸酶處理中,隨著鈣磷比從1.2:1或1.7:1擴大至2.2:1時,其採食量以及體增重皆有降低之趨勢,飼料利用效率有變差之趨勢,但都無顯著之差異。在脛骨強度、屈曲力矩和應力方面,四處理組之間皆無顯著差異。脛骨內鈣和磷含量,皆以飼糧中鈣含量在0.61%時添加植酸酶者最低(P<0.05),而以鈣含量1.10%並添加植酸酶處理組,其脛骨內鈣量最高(P<0.05)。
因此,綜合兩個試驗之結果,在肉雞飼糧中添加植酸酶,有效磷含量降至0.25%,鈣含量在0.84%時,即可得到最佳之利用效率。

The objective of this study was to investigate the effect of phytase supplementation on the performance of broilers fed diets with different levels of calcium and available phosphorus (AP). In each experiment, two-hundred and forty-day-old commercial broiler of Arbor Acres strain were randomly distributed into 12 floor pens with 20 chicks per pen. A randomized complete block design of 4 treatments and 3 replicates growth trial was conducted for six weeks; 1-3 weeks was starter and 4-6 weeks was grower periods. Feed and water were offered ad libitum during the experimental period. At one-day, 3 and 6 weeks of age, body weight were recorded individually. In Exp. 1, the basal diet in the starter period contained ME 3054 kcal/kg, CP 21%, Ca 0.87% and AP 0.40%. In the grower period contained ME 3049kcal/kg, CP 19% and Ca 0.87% and AP 0.40%. The treatment groups were adjusted for AP levels at 0.40%, 0.25% and 0.10%, which were supplemented with 600 FTU phytase/ kg. In Exp. 2, the basal diet contained ME 3113kcal/kg, CP 21%, AP 0.25% and Ca 0.84%. In the grower period contained ME 3093 kcal/kg, CP 19%, total phosphorus 0.48% (AP 0.25%) and Ca 0.84%. The treatment groups were adjusted for calcium levels at 1.10%, 0.84% and 0.61% (Ca: TP ratio at 2.2, 1.7 and 1.2, respectively), which were supplemented with 600 FTU phytase/kg. At 38 days of age, blood samples were taken from the brachial vein of wing from 6 birds of each treatment, for measurement of plasma Ca, P and alkaline phosphatase activity. At the end of six weeks, 6 birds from each treatment were selected randomly and collected excreta for five days. Tibia samples from selected birds were collected after slaughtering at 47 days of age.
Results showed that there were no significant differences of feed intake in 1-3weeks of age and body weight gain and feed conversion ratio in 4-6 and 1-6 weeks of age among control, AP 0.40% and AP 0.25% groups, but birds fed diet with AP 0.10%, though supplemented with phytase, was lower in every performance than that of other treatments (P<0.05). In 4-6 weeks, the body weight gain of AP 0.40% diet supplemented with phytase groups was the highest and AP 0.10% diet supplemented with phytase groups was the lowest (P<0.05). The feed conversion ratio was not significantly different among four treatments. Most birds from diet of AP 0.10% supplemented with phytase were rickets; while in the starter period (1-3 weeks) which were not severe, however in grower period (4-6 weeks) rickets were increased significantly. As a result, lower AP 0.10% diet with supplemental phytase, could not satisfy the demand of broilers normal performance.
The excreta P and plasma P were the lowest (P<0.05) and the plasma Ca was the highest (P<0.05) from the birds fed 0.10% AP with supplemental phytase. The plasma alkaline phosphatase activity was not significantly different (P>0.05) among the four treatments. The bone characteristics of tibia strength and bending moment of birds with 0.25% AP plus supplemental phytase were the highest (P<0.05).
In Exp. 2, diets with 0.84% Ca and supplemental phytase had higher feed intake, body weight and lower feed conversion ratio than control group in 1-3, 4-6 and 1-6 weeks. Diets with supplemental phytase, when Ca: TP ratio increased from 1.2 or 1.7 to 2.2, body weight gain was improved significantly in 1-3 weeks; feed intake and body weight gain and feed conversion ratio in 4-6, 1-6weeks, were not significantly different among the four treatments. There were not significantly different among four treatments on the tibia strength, bending moment and stress of bone characteristics. The birds fed with 0.61% Ca diet plus phytase had the lowest tibia Ca and P content among the four treatments (P<0.05), and those fed with 1.10% Ca diet plus phytase had the highest (P<0.05).
Therefore, when phytase was supplemented in the broiler diets, Ca level was suggested to maintain at 0.84% and AP level could decreased to 0.25% and the performance of broiler would be maintained.

目錄
中文摘要……………………………………………………………....I
英文摘要……………………………………………………………...V
誌謝……………………………………………………………….…IX
目錄………………………………………………………………….XI
圖次索引………………………………………………………….. XVI
表次索引………………………………………………………….XVII
壹、前言………………………………………………………………1
貳、文獻探討…………………………………………………………2
一、鈣與磷對動物之重要性………………………………………2
(一) 鈣在動物體內的作用、吸收代謝及其調節因子………2
1. 鈣之來源與分布……………………………………..2
2. 動物體內鈣之代謝吸收……………………………..2
3. 動物體內鈣之恆定調節因子………………………..3
(二) 磷在動物體內的作用、吸收代謝及其有效性之測定…4
1. 磷之來源與分布……………………………………...4
2. 動物體內磷之代謝吸收……………………………...5
3. 飼料原料中磷之有效性之測定……………………...6
(三) 家禽鈣、磷需要量之測定指標…………………………7
1. 生長性狀……………………………………………...7
2. 骨骼性狀……………………………………………...8
3. 血液性狀……………………………………………...9
二、植酸對飼料利用之影響………………………………………9
(一) 植酸之介紹……………………………………………...9
(二) 植酸磷之生物有效性………………………………….11
(三) 植酸與其他營養分間之關係………………………….11
三、植酸酶之介紹………………………………………………..13
(一) 植酸酶之作用………………………………………….13
(二) 植酸酶之來源………………………………………….13
(三) 植酸酶產生菌之介紹………………………………….15
(四) 植酸酶在消化道的作用部位………………………….17
四、動物糞便中排泄過量磷對於環境污染之影響……………..17
五、植酸酶在禽畜生產之應用…………………………………..18
(一) 添加植酸酶對禽畜生產性能之影響………………….18
(二) 飼糧添加植酸酶對於排泄物中磷含量之影響……….19
(三) 使用植酸酶產品之安全劑量………………………….20
(四) 影響植酸酶作用之因子……………………………….21
1. 飼糧中鈣磷比………………………………………….21
2. 鈣的含量……………………………………………….22
3. 磷的含量……………………………………………….23
4. 維生素D3……………………………………………….24
5. 有機酸………………………………………………….25
6. 飼料加工時的處理溫度……………………………….26
7. 動物年齡和生理狀況………………………………….27
8.動物腸道內影響植酸酶作用之因子……………..…….28
六、提高飼料原料中植酸磷利用率之可能方法………………..29
(一) 選擇含低植酸之飼料原料…………………………….29
(二) 使用高有效磷玉米…………………………………….30
(三) 萌芽植物可提高植酸酶活性………………………….31
(四) 浸泡可降低植酸鹽含量……………………………….31
(五) 將植物性原料作酵素前處理………………………….32
(六) 基因轉殖植物(transgenic plant)表現外來植酸酶…….32
(七) 飼料之額外添加物…………………………………….33
參、材料與方法……………………………………………………..34
一、試驗動物……………………………………………………..34
二、酵素來源……………………………………………………..34
三、試驗動物之飼養管理………………………………………..34
四、試驗設計……………………………………………………..35
五、血液和骨骼採樣……………………………………………..41
六、糞便收集……………………………………………………..41
七、測定項目及方法……………………………………………..42
(一) 骨骼性狀……………………………………………….42
(二) 血液中鈣、無機磷以及鹼性磷酸酶之測定………….45
(三) 飼料、糞便以及骨骼中之鈣濃度測定……………….45
(四) 飼料、糞便以及骨骼中之磷濃度測定……………….46
七、統計分析……………………………………………………..47
肆、結果與討論……………………………………………………..48
一、試驗一………………………………………………………..48
(一) 對生長性能之影響……………………………………...…48
(二) 對糞便排出物之影響……………………………………...51
(三) 對血液性狀之影響………………………………………...58
(四) 對脛骨性狀之影響………………………………………...61
二、試驗二……………………………………………………….67
(一) 對生長性能之影響………………………………………...67
(二) 對糞便排出物之影響……………………………………...70
(三) 對血液性狀之影響………………………………………...72
(四) 對脛骨性狀之影響………………………………………...79
伍、結論…………………………………………………………….84
陸、參考文獻……………………………………………………….86
附錄…………………………………………………………………104
作者介紹…………………………………………………………....105

葉慶章,1988。台灣土雞有效磷需要量之研究。碩士論文。國立中興大學,台中市。
管波昌,2000。飼糧中非植酸磷含量及添加植酸酶對肉雞生長性能及骨骼性狀之影響。碩士論文。國立中興大學,台中市。
Ahmad, T., S. Rasool, M. Sarwar, A. Haq and Z.Hasan. 2000. Effect of microbial phytase produced from a fungus Aspergillus niger on bioavailability of phosphorus and calcium in broiler chickens. Anim. Feed Sci. Tech. 83:103-114.
Atia, F. A., P. E. Waibel, I. Hermes, C.W. Carlson and M. M. Walser. 2000. Effect of dietary phosphorus, calcium, and phytase on performance of growing turkeys. Poultry Sci. 79:231-239.
Bailey, C. A., S. Linton, R. Briser and C. R. Creger. 1986. Dietary phosphorus on bone mineralization to very young poultry. Poultry Sci. 63:311-316.
Ballam, G. C., T. S. Nelson and L. K. Kirby. 1984. Effect of fiber and phytate source and of calcium and phosphorus level on phytate hydrolysis in the chick. Poultry Sci. 63: 333-338.
Boyd, R. D., D. Hall and J. F. Wu. 1983. Plasma alkaline phosphorus as a criterion for determining biological availability of phosphorus for swine. J. Anim. Sci. 57:396-401.
Breves, G. and B. Schorder. 1991. Comparative aspects of gastrointestinal phosphorus metabolism. Nutr. Res. Rev. 4:125-140.
Byod, R. D., D. Hall and J. F. Wu. 1983. Plasma alkaline phosphatase as a criterion for determining biological availability of phosphorus for swine. J. Anim. Sci. 57:396-401.
Caldwell, R. A. 1992. Effect of calcium and phytic acid on the activation of trypsinogen and the stability of trypsin. J. Agric. Food chem. 40:43-46.
Crenshaw, T. D., E. R. Peo. A. J. Lewis and B. D. Moser. 1981. Bone strength as a trait for assessing mineralization in swine: A critical review of techniques involved. J. Anim. Sci. 53(3): 827-835.
Cromwell, G. L. 1980. Biological availability of phosphorus for pigs. Feedstuffs : 38-42.
Daniel, T. C. A. N. Sharpley and J. L. Lemunyon. 1998. Agricultural phosphorus and eutrophication: a symposium overview. J. Envir. Quality 27: 251-257.
Davies, N. T. and A.A. Flett. 1978. The similarity between alkaline phosphataes (E 3.1.3.1) and phytase (EC 3.1.3.8) activities in rat intestine and their impotance in phytate-induced zinc deficiency. Br. J. Nutr. 39:307-316.
Dellaert, B. M., G. F. V. Van der Peet, A. W. Jongbloed and S. Beers. 1990. A comparison of different techniques to assess the biological availability of feed phosphorus in pig feeding. Netherlands J. Agric. Sci. 38:555-566.
Deluca, H. F. and H. K. Schnoes. 1983. Vitamin D : recent advances. Ann. Rev. Biochem. 52: 411-439.
Denbow, D. M., V. Ravindran, E. T. Kornegay, Z. Yi and R. M. Hulet. 1995. Improving phosphorus availability in soybean meal for broiler by supplemental phytase. Poultry Sci. 74:1831-1842.
Düngelhoef, M., M. Rodehutscord, H. Spiekers and E. Pfeffer. 1994. Effects of supplemental microbial phytase on availability of phosphorus contained in maize, wheat and triticale to pigs. Anim. Feed Sci. Tech. 49:1-10.
Edwards, H. M. 1983. Phosphorus. I. Effects of breed and strain on utilization of suoptimal levels of phosphorus in thee ration. Poultry Sci. 62: 77-84.
Edwards, H. M. 1993. Dietary 1,25-dihydroxycholecalciferol supplementation increases natural phytate phosphorus utilization in chickens. J. Nutr. 123: 567-577.
Eeckhout, W. and M. De Paepe. 1996. In vitro and in vivo comparison of microbial and plant phytase, edited by B. C. Michael and E. T. Kornegay. Phytase in Animal Nutrition and Waste Management, BASF corporation, Mount Olive, New Jersey, pp 237-241.
Fandrejewski, H., S. Raj, D. Weremko, T. Zebrowska, K. Han, J. H. Kim and W. T. Cho. 1997. Apparent digestibility of phosphorus in experimental feeds and the effect of commercial phytase. Asian-Aus. J. Anim. Sci. 10: 665-670.
Gardiner, E. E., 1973. Inorganic phosphorus and inorganic calcium in the blood plasma from two breeds of chickens fed various levels of dietary calcium and phosphorus. Can. J. Anim. Sci. 53: 551-556.
Gifford-Steffen, S. R. and F. M. Clydesdale. 1993. Effect of varying concentrations of phytate, calcium, and zinc on the solubility of protein, calcium, zinc and phytate in soy protein concentrate. J. Food Prot. 56: 42-46.
Groff, J. L., S. S. Gropper and S. H. Hunt. 1995. Advanced Nutrition and Human Metabolism ( Second Ed.). pp 325-351. West Publishing Company. U. S. A.
Guillot, B. B., P. Casado, P. Maupetit, C. Jondreville and F. Gatel. 1996. Wheat phosphorus availability: 2-in vivo study in broilers and pigs; relationship with endogenous phytasic activity and phytic phosphorus content in wheat. J. Sci. Food Agric 70: 69-74.
Huff, W. E., P. A. Moore, P. W. Waldroup, A. L. Waldroup, J. M. Balog, G. R. Huff, N. C. Rath, T. C. Daniel and V. Raboy. 1998. Effect of dietary phytase and high available phosphorus corn on broiler chicken performance. Poultry Sci. 77:1899-1904.
Hurwitz, S. and A. Bar, 1970. The site of calcium and phosphate absorption in the chick. Poultry Sci. 49: 324-325.
Hurwitz, S., A. Bar and A. Meshorer. 1973. Field rickets in turkey poults: plasma and bone chemistry, bone histology, intestinal calcium-binding protein. Poultry Sci. 52: 1370-1374.
Johnson, L. F. and M. E. Tate. 1969. Structure of “phytic acids”. Can. J. Chem. 47: 63-72.
Jongbloed, A. W. and P. A. Kemme. 1990. Apparent digestible phosphorus in the feeding of pigs in relation to availability requirement and environment. 1. Digestible phosphorus in feedstuffs from plant and animal origin. Neth. J. Agric. Sci. 38:567-575.
Jongbloed, A. W., H. Everts and P. A. Kemme. 1993. Phosphorus availability and requirements in pigs. In: Recent Developments in Pig Nutrition 2. D. J. A. Cole, W. Haresigh and P. C. Garnsworthy Ed. Nottingham University Press. pp 163-178.
Karunajeewa, H., D. A. Barr and M. Fox. 1986. Effect of dietary phosphorus concentration and electrolyte balance on the growth performance of broiler chickens. Br. Poultry Sci. 27:601-612.
Kemme, P. A., J. S. Radcliffe, A. W. Jongbloed and Z. Mroz. 1997a. The effect of sow parity on digestibility of proximate components and minerals during lactation as influenced by diet and microbial phytase supplementation. J. Anim. Sci. 75: 2147-2153.
Kemme, P. A., A. W. Jongbloed, Z. Mroz and A. C. Beynen. 1997b. The efficacy of Aspergillus niger phytase in rendering phytate phosphorus available for absorption in pigs is influenced by pig physiological status. J. Anim. Sci. 75:2129-2138.
Kemme, P. A., J. S. Radcliffe, A. W. Jongbloed and Z. Morz. 1997c. Factors affecting phosphorus and calcium digestibility in diets for growing-finishing pigs. J. Anim. Sci. 75:2139-2146.
Kemme, P. A., A. W. Jongbloed, Z. Morz and A. C. Beynen. 1998. Diurnal variation in degradation of phytic acid by plant phytase in the pig stomach. Live. Prod. Sci. 54: 33-44.
Keshavarz, K. 2000. Reevaluaton of nonphytate phosphorus requirement of growing pullets with and without phytase. Poultry Sci. 79:1143-1153.
Ketaren, P. P., E. S. Batterham, E. B. Dettmann and D. J. Farrell. 1993a. Phosphorus studies in pigs. 3. Effect of phytase supplementation on the digestibility and availability of phosphorus in soya-bean meal for grower pigs. Br. J. Nutr. 70: 289-311.
Ketaren, P. P., E. S. Batterhan and E. B. Dettmann. 1993b. Phosphorus studies in pigs. 2. Assessing phosphorus availability for pigs and rats. Br. J. Nutr. 70: 269-288.
Kies, A. K., K. H. F. Van Hemert and W. C. Sauer. 2001. Effect of phytase on protein and amino acid digestibility and energy utilisation. World’s Poult. Sci. J. 57:109-125.
Kim, Y. O., H. K. Kim , K. S. Bae, J. H. Yu and T. K. Oh. 1998. Purification and properties of a thermostable phytase from Bacillus sp. DS11. Enzyme Micro. Tech. 22: 2-7.
Kornegay, E. T. 1996. Effectiveness of Natuphos phytase in improving the bioavailability of phosphorus and other nutrients in corn-soybean meal diets for young pigs. edited by B. C. Michael and E. T. Kornegay. Phytase in Animal Nutrition and Waste Management, BASF corporation, Mount Olive, New Jersey, pp 41-60.
Kornegay, E. T. 2000. Digestion of phosphorus and other nutrients: the role of phytases and factors influencing their activity. In: M. R. Bedford and G. G. Patridge. (Ed.). Enzyme in farm animal nutrition. pp. 237-271. Wiltshire. UK.
Kornegay, E. T. and H. Qian. 1996. Replacement of inorganic phosphorus by microbial phytase for young pigs fed on a maize-soyabean-meal diet. Br. J. Nutr. 76: 563-578.
Kornegay, E.T., D. M. Denbow, Z. Yi and V. Ravindran. 1996. Response of broilers to graded levels of microbial phytase added to maize-soybean-meal-based diets containing three levels of non-phytate phosphorus. Br. J. Nutr. 75: 839-852.
Leeson, S., H. Namkung, M. Cottrill and C. W. Forsberg. 2000.Effecacy of new bacterial phytasr in poultry diets. Can. J. Anim. Sci. 80: 527-528.
Lei, X. G., P. K. Ku, E. R. Miller, M. T. Yokoyama and D. E. Ullrey. 1994. Calcium level affects the efficacy of supplemental microbial phytase in corn-soybean meal diets of weanling pigs. J. Anim. Sci. 72:139-143.
Li, D., X. Che, Y. Wang, C. Hong and P. A. Thacker. 1998. Effect of microbial phytase, vitamin D3, and citric acid on growth performance and phosphorus, nitrogen and calcium digestibility in growing swine. Anim. Feed Sci. Tech. 73: 173-186.
Maenz, D. D. 2000. Enzymatic characteristics of phytases as they relate to their use in animal feeds. In: M. R.Bedford and G. G. Patridge. (Ed.). Enzyme in farm animal nutrition. pp. 61-84. Wiltshire. UK.
Maenz, D. D. and H. L. Classen. 1998. Phytase activity in the small intestinal brush border membrane of the chicken. Poultry Sci. 77: 557-563.
Maenz, D. D., M. E. S. Carmen, W. N. Rex and L. C. Henry. 1999. The effect of minerals and chelators on the formation of phytase-resistant and phytase-susceptible forms of phytic acid in solution and a slurry of canola meal. Anim. Feed Sci. Tech. 81: 177-192.
Mahanna, C. and Y. Nys. 1999. Changes in zinc and manganese availability in broiler chicks induced by vegetal and microbial phytases. Anim. Feed Sci. Tech. 77:241-253.
Maynard, L. A., J. K. Loosli, H. F. Hintz and R. G. Warner. 1993. Animal nutrition (7th Ed.). McGraw-Hill Publications in the agricultural Science. pp. 220-238.
McCuaig, L. W., M. I. Davies and I. Motzik. 1972. Intestinal alkaline phosphataes and phytase of chicks: Effect of dietary magnesium, calcium, phosphorus and thyroactive casein. Poultry Sci. 51: 526-530.
Michael, B. C. 1996. Ecological nutrition: a costly or smart move ? Phytase in Animal Nutrition and Waste Management, B. C. Michael and E. T. Kornegay (Ed.). pp 41-60. BASF Corporation. New Jersey.
Miles, R. D. and T. S. Nelson. 1974. The effect of enzymatic hydrolysis of phytate on the available energy content of feed ingredients for chicks and rats. Poultry Sci. 53: 1714-1717.
Mitchell, R. D. and H. M. Edwards. 1996. Effects of phytase and 1,25-Dihydroxycholecalciferol on phytate utilization and the quantitative requirement for calcium and phosphorus in young broiler chickens. Poultry Sci. 75: 95-110.
Mohammed, A., M. J. Gibney and T. G. Taylor. 1991. The effects of dietary levels of inorganic phosphorus, calcium and cholecalciferol on the digestibility of phytate-P by the chick. Br. J. Nutr. 66: 251-259.
Mroz, Z., A. W. Jongbloed and P. A. Kemme. 1994. Apparent digestibility and retention of nutrients bound to phytate complexes as influenced by microbial phytase and feeding regimen in pigs. J. Anim. Sci. 72:126-132.
Mulroney, S. E. and A. Haramati. 1990. Renal adaptation to changes in dietary phosphorus during development. Am. J. Physiol. 258: 1650-1656.
Nelson, T. S. 1967. The utilization of phytate phosphorus by poultry-A review. Poultry Sci. 46 : 862-871.
Nelson, T. S., T. R. Shieh, R. J. Wodzinski and J. H. Ware. 1968.The availability of phytate phosphorus in soybean meal before and after treatment with a mold phytase. Poultry Sci. : 1842-1848.
Nelson, T. S.1976. The hydrolysis of phytate phosphorus by chicks and laying pigs. Poultry Sci. 55 : 2262-2264.
Nelson, T. S., T. R. Shieh, R. J. Wodzinski and J. H. Ware. 1971. Effect of supplemental phytase on the utilization of phytate phosphorus by chicks. J. Nutr. 101: 1289-1294.
NRC, 1994. Nutrient Requirements of Poultry (9th rev. Ed.). National Academy Press, Washington, D. C.
Oberleas, D. and B. F. Harland. 1996. Impact of phytic acid on nutrient availability. Phytase in Animal Nutrition and Waste Management, edited by B. C. Michael and E. T. Kornegay. pp 77-84. BASF Corporation. New Jersey.
Pasamontes, L., M. Haiker, M. Wyss, M. Tessier and A. P. G. M. van Loon. 1997. Gene cloning, purification, and characterization of a heat-stable phytase from the fungus Aspergillus fumigatus. Appl. Envir. Micro. : 1696-1700.
Perney, K. M., A. H. Cantor, M. L. Straw and K. L. Herkelman. 1993. The effect of dietary phytase on growth performance and phosphorus utilization of broiler chicks. Poultry Sci. 72: 2106-2114.
Pointillart, A., A. Fourdin and N. Fontaine. 1987. Importance of cereal phytase activity for phytate phosphorus utilization by growing pigs fed diets containing tritical or corn. J. Nutr. 117: 907-913.
Pond, W. G., D. C. Church and K. R. Pond. 1995. Basic Animal Nutrition and Feeding (4th Ed.). pp 169-184. John Wiley ﹠Sons. U. S. A.
Potter, L M. 1988. Bioavailability of phosphorus from various phosphates based on body weight and toe ash measurements. Poultry Sci. 67: 96-102.
Qian, H., E. T. Kornegay and D. M. Denbow. 1996a. Phosphorus Equivalence of microbial phytase in turkey diets as influenced by calcium to phosphorus ratios and phosphorus levels. Poultry Sci. 75: 69-81.
Qian, H., E. T. Kornegay and H. P. Veit. 1996b. Effect of supplemental phytase and phosphorus on histological, mechanical and chemical traits of tibial and performance of turkeys fed on soybean-meal-based semi-purified diets high in phytate phosphorus. Br. J. Nutr. 76: 263-272.
Qian, H., E. T. Kornrgay and D .E. Conner. 1996c. Adverse effects of wide calcium : phosphorus ratios on supplemental phytase efficacy for weanling pigs fed two dietary phosphorus levels. J. Anim. Sci. 74:1288-1297.
Qian, H., H. P. Vert, E. T. Korngay and D. M. Denbow. 1996d. Effect of supplemental phytase and phosphorus on histological and other tibail characteristics and performances of boilers fed semi-purified diets. Poultry Sci. 75: 618-626.
Qian, H., E.T. Kornegay and D. M. Denbow. 1997. Utilization of phytate phosphorus and calcium as influenced by microbial phytase, cholecalciferol, and the calcium: total phosphorus ratio in broiler diets. Poultry Sci. 76: 37-46.
Ravindran, V., E. T. Kornegay, D. M. Denbow, Z.Yi and R. M. Hulet. 1995. Response of turkey poults to tiered levels of Natuphos® phytase added to soybean meal-based semi-purified diets containing three levels of nonphytate phosphorus. Poultry Sci. 74: 1843-1854.
Ravindran, V., P. H. Selle, G. Ravindran, P. C. H. Morel, A. K. Kies and W. L.Bryden. 2001. Microbial phytase improves performance, apparent metabolizable energy, and ileal amino acid digestibility of broiler fed a lysine-deficient diet. Poultry Sci. 80: 338-344.
Ravindran, V., S. Cabahug, G. Ravindran and W. L. Bryden. 1999. Influence of microbial phytase on apparent ileal amino acid digestibility of feedstuffs for broilers. Poultry Sci. 78: 699-706.
Ravindran, V., S. Cabahug, G. Ravindran, P. H. Selle and W. L. Bryden. 2000. Response of broiler chickens to microbial phytase supplementation as influenced by dietary phytic acid and non-phytate phosphorus levels. Ⅱ. Effects on apparent metabolisable energy, nutrient digestibility and nutrient retention. Br. Poult. Sci. 41: 193-200.
Risley, C. R., E. T. Kornegay, M. D. Lindemann, C. M.Wood and W. N. Eigel. 1992. Effect of feeding organic acids on selected intestinal content measurements at varying times postweaning in pigs. J. Anim. Sci. 70: 196-206.
Roberson, K. D. and H. M. Edwards. 1994. Effects of 1,25-dihydroxycholecaciferol and phytase on zinc utilization in broiler chicks. Poultry Sci. 73: 1312-1326.
Scheideler, S. E. and P. R. Ferket. 2000. Phytase in broiler rations-effects on carcass yields and incidence of tibial dyschondroplasia. J. Appl. Poult. Res. 9: 468-475.
Scott, T. A., R. Kampen and F. G. Silversides. 1999. The effect of phosphorus, phytase enzyme, and calcium on the performance of layers fed corn-based diets. Poultry Sci. 78 :1742-1749.
Sebastian, S., S. P. Touchburn, E. R. Chavez and P. C. Lague. 1996. The effects of supplemental microbial phytase on the performance and utilization of dietary calcium, phosphorus, copper, and zinc in broiler chickens fed corn-soybean diets. Poultry Sci. 75 :729-736.
Shafey, T. M. 1993. Calcium tolerance of growing chickens : effect of ratio of dietary calcium to available phosphorus. World’s Poult. Sci. J. 49:5-18.
Shafey, T. M., M. W. McDonald and R. A. E. Rym. 1990. Effect of dietary Ca, AP and vitamin D on growth rate, food utilization, plasma and bone constituents and Ca and phosphorus retention of commercial broiler strains. Br. Poult. Sci. 31: 587-602.
Shafey, T. M., M.W. McDonald and G. J. Diegle. 1991. Effect of dietary calcium and available phosphorus concentration on digesta pH and on availability of calcium, iron, magnesium and zinc from the intestinal contents of meat chickens. Br. Poult. Sci. 32: 185-194.
Shieh, T. R., R. J. Wodzinski and J. H. Ware. 1969. Regulation of the formation of acid phosphatase by inorganic phosphate in Aspergillus Ficuum. J. Bacteriology 100:1161-1165.
Simons, P. C., H. A. J. Versteegh, A. W. Jongbloed , P. A. Kemme, P. Slunp, K. D. Bos, M. G. E. Wolters, R. F. Beudeker and G. J. Verschoor. 1990. Improvement of phosphorus availability by microbial phytase in broilers and pigs. Br. J. Nutr. 64: 525-540.
Singh, M. and A. D. Kirkorian. 1982. Inhibition of trypsin activity in vitro by phytase. J. Agric. Food Chem. 30:799-800.
Skoglund, E., T. Larsen and A. S. Sandlberg. 1997. Comparison between steeping and pelleting in a mixed diet at different calcium levels on phytase degradation in pigs. Can. J. Anim. Sci. 77:471-477.
Smith, O. B. and E. Kabaija. 1985. Effect of high dietary calcium and wide calcium-phosphorus ratios in broiler diets. Poultry Sci. 64: 1713-1720.
Sohail, S. S. and D. A. Roland. 1999. Influence of supplemental phytase on performance of broilers four to six weeks of age. Poultry Sci. 78: 550-555.
Um, J. S., I. K. Paik, M. B. Chang and B. H. Lee. 1999. Effects of microbial phytase supplementation to diets with low non-phytate phosphorus levels on the performance and bioavailability of nutrients in laying hens. Asian-Aus. J. Anim. Sci. 12:203-208.
Wasserman, R. H. and A. N. Taylor. 1973. Intestinal absorption of phosphate in the chick: effect of vitamin D3 and other parameters. J. Nutr. 103: 586-599.
Yi, Z. and E. T. Kornegay. 1996. Sites of phytase activity in the gastrointestinal tract of young pigs. Anim. Feed Sci. Tech. 61: 361-368.
Yi, Z., E. T. Kornegay, V. Ravindran and D. M. Denbow. 1996a. Improving phytate phosphorus availability in corn and soybean meal for broilers using microbial phytase and calculation of phosphorus equivalency values for phytase. Poultry Sci. 75: 240-248.
Yi, Z., E. T. Kornegay and D. M. Denbow. 1996b. Effect of microbial phytase on nitrogen and amino acid digestibility and nitrogen retention of turkey poults fed corn-soybean diets. Poultry Sci. 75: 979-990.
Young, L. G., M. Leunissen and J. L. Atkinson. 1993. Addition of microbial phytase to diets of young pigs. J. Anim. Sci. 71: 2147-2150.
Zanini, S. F. and M. H. Sazzad. 1999. Effects of microbial phytase on growth and mineral utilization in broilers fed on maize soyabean-based diets. Br. Poult. Sci. 40 :348-352.
Zhang, Z. B., E. T. Kornegay and H. P. Viet. 1998. Comparison of genetically engineered microbial phytase and plant phytase for young pigs. J. Anim. Sci. 76(Suppl 1):178.
Zyla, K., D. R. Ledoux, A. Carcia and T. L.Veum. 1995. An in vtro procedure for studying enzymic dephosphorylation of phytate in maize-soyabean feeds for turkey poults. Br. J. Nutr. 74: 3-17.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top