跳到主要內容

臺灣博碩士論文加值系統

(3.238.252.196) 您好!臺灣時間:2022/08/13 23:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳佐治
研究生(外文):Tzuoo-Jyh Chen
論文名稱:光量與水分對牛樟扦插苗及稚樹生理性狀的影響
論文名稱(外文):Effects of light and water regimes on physiological characteristics in cutting seedlings and saplings of Cinnamomum kanehira Hay.
指導教授:郭耀綸郭耀綸引用關係
指導教授(外文):Yau-Lun Kuo
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:森林系
學門:農業科學學門
學類:林業學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:79
中文關鍵詞:牛樟光合作用水勢遮蔭試驗
外文關鍵詞:Cinnamomum kanehira Hay.PhotosynthesisWater potentialshade experiment
相關次數:
  • 被引用被引用:1
  • 點閱點閱:1024
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
牛樟是台灣重要經濟樹種,但因人為利用而使天然族群數量日漸減少。牛樟因種子數量少,目前多用扦插苗木造林。然而至今對牛樟扦插苗的生理耐性範圍仍不清楚。扦插苗是否能適應與其原生環境差異頗大的造林地環境?能否種植在屏東熱帶低海拔地區?它需要人為營造怎樣的環境較能適合其生長?這些問題仍待解答。本研究利用不同的遮蔭處理,探討牛樟苗在屏東地區較乾熱的季節,是否因遮蔭而對其生理及生長有所幫助。此外,並以斷水處理來了解牛樟苗面臨乾旱環境時的生理表現。
研究結果顯示,牛樟扦插苗於相對光量100%、65%、35%、10%、林冠孔隙及林下共六種光量環境下,以生長在相對光量35∼100%的苗木有顯著最大生物量累積。生長在10%光量環境的牛樟苗木其樹高最大,比全光苗多30%,但生物量比全光苗少70%。牛樟苗的光合作用光飽和點在700∼950 µmol m-2s-1範圍,六種處理間無顯著差異;光補償點隨生長環境光量而增加,測值在9∼18 µmol m-2s-1範圍;暗呼吸率則在0.56至0.94 µmol m-2s-1之間;最大光合作用率以生長在10%至65%光環境者顯著最高,均在8.0 µmol m-2s-1以上。牛樟的葉部水勢低於-2.0 MPa時,光合作用即降至0.5 µmol m-2s-1以下;葉部黎明前水勢低於-1.34 MPa,或葉部水勢低於-2.5 MPa時,淨光合作用會成為負值。由此顯示牛樟苗耐旱性不高。
校園栽植區遮蔭處理可稍微減輕牛樟稚樹的水逆境及葉溫過高情況,並減緩中午光合作用率的降低程度,但對全天光合作用率的增加效果不大。培育在校園栽植區100%光量環境的牛樟稚樹各測定日的光合作用率,均顯著高於其他有遮蔭環境者。乾季時生長在100%光環境的牛樟稚樹,其光合作用率與葉溫有顯著負相關;但合併不同光環境的資料,則光合作用率與光量有顯著正相關。
牛樟盆苗的生理表現顯示其有耐蔭樹種的特性,但生長性狀可適應相對光量從100%至10%不同程度的光環境。校園栽植區的牛樟稚樹於全光環境的光合作用率比遮蔭處理者為高,生長較佳者在4年間高生長可達3 m以上。

Cinnamomum kanehira Hay. is a valuable timber species in Taiwan. However, natural populations of this species are declined rapidly caused by over-utilization. Cutting seedlings, instead of insufficient seed seedlings, were used as planting materials in silvicultural practices due to seed productions of this species. Despite its importance in Taiwan forestry, we have little knowledge about the abilities of physiological tolerance to environmental factors of these cutting seedlings. Can it survive on habitats with distinct environmental conditions to its original habitats?Can it be planted successfully on low-land area of tropical Pingtung?What environmental conditions can we manipulate to improve growth performances of these cutting seedlings?Those are some important questions to be answered. Therefore, I conducted two series of shade experiments to test if shading can improve the growth and physiological activities of this species under relatively hot and droughty season in Pingtung area. Furthermore, I also conducted a water-withholding experiment to see the physiological responses of the cutting seedlings under droughty condition.
Results shows that, among the six seedling growth light environments of 100%, 65%, 35%, 10% of full sun, forest canopy, and forest understory, biomass accumulation were significantly higher for cutting seedlings grown at 35% to 100% full sun. Although seedling height was larger for seedlings grown at 10% light environment, 30% more than those grown at full-sun environment, there biomass was 70% less than full-sun seedlings. The photosynthetic light saturation points of the cutting seedlings were between 700 and 950 µmol m-2s-1, and no significant difference was found among the six light environments. The photosynthetic light compensation points were between 9 to 18 µmol m-2s-1, and dark respiration between 0.56 to 0.94 µmol m-2s-1, both increased as the degree of growth light availability increased. Maximum photosynthetic rates were higher in seedlings grown at 10% to 65% light environments, all above 8.0 µmol m-2s-1. Photosynthetic rate was as low as 0.5 µmol m-2s-1or less when leaf water potential decreased below —2.0 MPa. Net photosynthetic rates will become negative as predawn leaf water potential less than —1.34 MPa or water potential of transpiring leaves less than —2.5 MPa. These results indicate that the ability of drought tolerance of C. kanehira seedlings was not high.
For saplings planted at NPUST campus, partly shading can slightly reduce water stress, high-heat stress, and the decline of photosynthetic rate at midday. However, partly shading had little effects on increasing the diurnal photosynthetic rates. The diurnal photosynthetic rates were higher for the saplings grown on full sun environment than the other shading environments. The photosynthetic rates were significantly and negatively correlated to leaf temperature during drought seasons for saplings grown at full sun environment. However, as all the data of different light environments combined, photosynthetic rates were positively correlated to light levels.
In conclusion, potted cutting seedlings of C. kanehira showed shade-tolerant characteristics, but growth performances can acclimate to 10% to 100% light environments. For saplings grown on full light environment of NPUST campus, their growth performances are better than those grown at partly shaded environments. Some 4-year-old, well-performed saplings may grow as high as 3 m tall.

中文摘要------------------------------------------ I
英文摘要---------------------------------------- III
誌謝--------------------------------------------- VI
目錄------------------------------------------- VIII
圖表索引------------------------------------------ X
圖目錄------------------------------------------ X
表目錄--------------------------------------- XIII
壹、前言------------------------------------------ 1
貳、前人研究-------------------------------------- 3
一、牛樟的生態分布及生育特性-------------------- 3
二、光合作用特性-------------------------------- 4
三、水分利用特性-------------------------------- 6
參、材料與方法------------------------------------ 8
一、試驗材料------------------------------------ 8
二、盆栽苗遮蔭試驗------------------------------ 8
三、不同營養系牛樟苗的光合作用性狀比較--------- 11
四、牛樟盆栽苗在不同斷水處理下的光合作用率----- 11
五、牛樟盆栽苗在不同葉部水勢時的光合作用率----- 12
六、校園栽植區牛樟稚樹在乾季時的光合作用率----- 13
七、葉部解剖構造------------------------------- 16
八、資料分析----------------------------------- 17
肆、結果----------------------------------------- 18
一、盆栽苗遮蔭試驗----------------------------- 18
二、盆栽苗乾旱試驗----------------------------- 23
三、校園栽植區牛樟稚樹遮蔭試驗----------------- 28
伍、討論----------------------------------------- 46
ㄧ、牛樟盆苗生長在不同光量下對形態及生理的影響- 46
二、牛樟盆苗在乾旱環境的反應------------------- 48
三、牛樟稚樹在不同光量與乾旱環境中的反應------- 50
陸、結論----------------------------------------- 54
柒、參考文獻------------------------------------- 57
捌、附錄----------------------------------------- 64
玖、作者簡介------------------------------------- 79

1. 王世彬、林讚標、簡慶德(1995)林木種子儲藏性質的分類。林業試
驗所研究報告季刊8(4): 371-388。
2. 王相華(1995)不同光量對四種季風與林樹種幼苗生長及形態影響。
林業試驗所研究報告季刊10(4): 405-418。
3. 王相華、郭耀綸、潘順勇(1997)墾丁高位珊瑚礁森林樹冠疏開對二
十種樹木種子發芽的影響。台灣林業科學12(3): 299-307。
4. 方榮坤、邱陸陽、廖天賜、林鴻忠(1987)林木耐陰性之研究--不同
光度對於樟樹、楓香、桃花心木苗木生長之影響。中興大學實驗林森
林系所研究報告208:1-10。
5. 方榮坤、廖天賜、沈慈安(1988)杉木人工林之林下栽培試驗。中興
大學實驗林森林系所研究報告9:9-15。
6. 林安秋(1991)作物之光合作用。台灣商務印局。
7. 林信輝(1995)山鹽青、山水柳在石灰岩礦區及控制環境下之光合成
氣體交換反應。中華水土保持學報26(2):103 -120。
8. 林鴻忠(1997)牛樟在玉里地區試驗造林之現況。牛樟生物學及育林
技術研討會論文集。第111-112頁。台灣省林業試驗所。146頁。
9. 林讚標(1993)牛樟與冇樟。林業試驗所研究報告季刊8(1): 11-20。
10.林鴻忠(1997)牛樟採穗園之建造與苗木繁殖。牛樟生物學及育林技
術研討會論文集。第75-77頁。台灣省林業試驗所。146頁。
11.姜家華、王義榮(1982)光度對於不同種源杉木、台灣杉幼苗生長之
影響。中華林學季刊15(2):1-21。
12.胡錦祥(1995)擾動地先驅樹種對主要環境應力適應性反應研究。中
興大學水土保持學系碩士論文。
13.高毓斌、黃松根(1993)牛樟之扦插繁殖。林業試驗所研究報告季刊8
(4):371-388。
14.郭志誠(1992)楓香及烏心石苗木對水分供給之反應。中興大學森林
學系碩士論文。
15.郭耀綸(1992)相思樹苗木生理及生長對水分逆境之反應。中華林學
季刊25(1):33-44。
16.郭耀綸(1994)從生理和形態上以較共存之相思樹與蒲姜對乾旱環境
的適應。中華林學季刊27(2):37-54。
17.郭耀綸(1995)六種固有景觀樹種之耐陰性研究。技術學刊10(1):
103-109。
18.郭耀綸(2000)南仁山熱帶低地雨林白榕冠層及林下植物的光合作
用。台灣林業科學15(3):351-363。
19.郭耀綸、吳祥鳴(1997)黃心柿、毛柿及大葉山欖苗木光合作用與形
態不同光量之可塑性。中華林學季刊30(2):165-185。
20.郭耀綸、楊月玲、吳祥鳴(1999)墾丁熱帶森林六種樹苗生長性狀及
光合作用對光量的可塑性。台灣林業科學14(3): 255-273。
21.陳芳瓊(1996)三種鄉土植物在水分應力下生長活力之探討。中興大
學水土保持學系碩士論文。
22.張東柱 (1997) 牛樟之病害。牛樟生物學及育林技術研討會論文集
127-131。
23.黃松根、何坤益、吳國伍、沈勇強、劉文玉 (1996) 牛樟天然林組成
與結構之調查。台灣林業科學11(4):349-360。
24.黃進輝(1994)烏心石苗木在不同光量下形態及生態反應。國立台灣
大學森林研究所碩士論文。
25.黃進輝、郭幸榮(1996)烏心石苗木於不同光度下之變化。國立台灣
大學農學院研究報告10(1):49-65。
26.游漢明、洪富文 (1997) 牛樟扦插苗出栽造林之生長表現。牛樟生物
學及育林技術研討會論文集。第113-117頁。台灣省林業試驗所。146
頁。
27.蔡青園、陳清義 (1991) 缺水對樟樹及楓香光合作用及生理特性之影
響。中華林學季刊24(2):47-57。
28.潘婷玫(1995)烏心石苗木對不同土壤水勢之適應性。國立台灣大學
森林研究所碩士論文。
29.劉正平、陳朝圳、范貴珠 (1990) 海岸防風樹種需光量之研究。屏東
農專學報32:103-108。
30.劉興旺(2001)不同光環境下微氣候、土壤硝酸態氮濃度變動與五種
原生闊葉樹苗木的生存適應性。國立台灣大學森林研究所博士論文。
31.簡慶德、林讚標 (1997) 牛樟種子的發芽促進。牛樟生物學及育林技
術研討會論文集。第71-73頁。台灣省林業試驗所。146頁。
32.Bazzaz, F. A. and R. W. Carlson (1982) Photosynthetic
acclimation to variability in the light environment of early
and late successional plants. Oecologia 54:313-316.
33.Bjorkman, O. (1981) Responses to different quantun flux
densities. In : O. L. Lange, P. S. Nobel, C. B. Osmond & H.
Ziegler (eds.) Physiological Plant EcologyⅠ. Encyclopedia
of Plant Physiology, Springer-Verlag. p.57-107.
34.Bolhar-Nordenkampf, H. R., S. P. Long N. R. Baker, G.
Oquist, U. Schreiber and E. G. Lechner (1989) Chlorophyll
fluorescence as a probe of the photosynthetic competence of
leaves in the field: a review of current instrumentation.
Functional Ecology 3:497-514.
35.Bordman, N. K. (1977) Comparative photosysthesis of sun and
shade plants. Plant Phsynthesis 28:355-377.
36.Braatne, J. H., T. M. Hinckley and R. F. Stettler (1992)
Influence of soil water on the physiological and
morphological components of plant water balance in Populus
trichocarpa, Populus deltoides and their F1 hybrids. Tree
Physiology 11:325-339.
37.Brooks, J. R., D. G. Sprugel and T. M. Hinckley (1996) The
effects of light acclimation during and after foliage
expansion on photosynthesis of Abies amabilis foliage within
the canopy. Oecologia 107:21-32.
38.Cannel, M. G. R. and J. Grace (1993) Competition for light:
detection, measurement, and quantification. Canada Journal
Research 23:1969-1979.
39.Connor, D. J., N. J. Legge and N. C. Turner (1977) Water
relations of mountain ash (Eucalyptus regnans F. Muell)
forests. Australia Journal Plant Physiology 4:753-762.
40.Flagella, Z., R. G. Campanile, G. Ronga, M. C. Stoppelli, D.
Pastore, A. De Caro and N. Di Fonzo (1996) The maintenance
of photosynthetic electron transport in relation to osmotic
adjustment in durum wheat cultivars differing in drought
resistance. Plant Science 118:127-133.
41.Giorio, P., G. Sorrentino and R. d'Andria (1995) Stomatal
behaviour, leaf water status and photosynthetic response in
field-grown olive trees under water deficit. Environment and
Experimental Botany 42:95-104.
42.Hsiao, T. C. (1973) Plant responses to water stress. Plant
Physiology 24:519-570.
43.Ishida, A., T. Toma, Y. Matsumoto, S. K. Yap and Y. Maruyama
(1996) Diurnal changes in leaf gas exchange characteristics
in the uppermost canopy of a rain forest tree, Dryobalanops
aromatica Gaerth f. Tree physiology 16:779-785.
44.Kang, S., H. Cai, and J. Zhang (2000) Estimation of maize
evaportranspiration under water deficits in a semiarid
region. Agricultural Water Management 43:1-14.
45.Kitajima, K. (1994) Relative importance of photosynthetic
traits and allocation patterns as correlates of seedling
shade tolerance of 13 tropical trees. Oecologica 98:419-428.
46.Kozlowski, T. T., P. J. Kramer and S. G. Pallardy (1991) The
physiological ecology of woody plants. Academic Press. p.657.
47.Kwesiga, F. K. and J. Grace (1986) The role of the red/far-
red ratio in the response of tropical tree seedlings to
shade. Annals Botany 57:283-290.
48.Liang, N. and K. Maruyama (1995) Interactive effects of CO2
enrichment and drought stress on gas exchange and water-use
efficiency in Alnus firma. Environmental and Experimental
Botany 35(3):353-361
49.Mwanamwenge, J., S. P. Loss, K. H. M. Siddique and P. S.
Cocks (1999) Effect of water stress during floral
initialtion, flowing and podding on the growth and yield of
faba bean (Vicia faba L.). European Journal of Agronomy 11:1-
11.
50.Ni, B. R. and S. G. Pallardy (1991) Response of gas exchange
to water stress in seedings of woody angiosperms. Tree
Physiology 8:1-9.
51.Oberbauer, S. F.and B. R. Strain (1986) Effects of canopy
position and irradiance on the leaf physiology and
morphology of Pentaclethra macroloba (Miniosaceae). American
Journal of Botany 73:409-416.
52.Ramos, J. and J. Grace (1990) The effects of shade on the
gas exchange of seedlings of four tropical trees from
Mexico. Funct. Ecul. 4:667-677.
53.Rascio, A., M. Russo, C. Platani and N. Di Fonzo (1998)
Drought intensity effects on genotypic differences in tissue
affinity for strongly bound water. Plant Science 132:121-126.
54.Riddoch, I., J. Grace, F. E. Fasehun, B. Riddoch and D. O.
Ladipo (1991) Photosynthesis and successional status of
seedling in a tropical semidecidous rain forest in Nigeria.
Joural of Ecology 79:491-503.
55.Ruit-Sánchez, M.C., R. Domingo, A. Pérez-
Pastor (2000) Water stress preconditioning to improve
drought resistance in young apricot plants. Plant Science
156:245-251.
56.Taiz, L. and E. Zeigen (1991) Plant physiology. The
Benjamin / Cummings publishing Co. p.557.
57.Turnbull, M. H., D. Doley and D. J. Yates (1993) The
dynamics of photosynthetic acclimation to changes in light
quantity and quality in three Australian rainforest tree
species. Oecologia 94:218-228.
58.Welander, N. T. and B. Ottosson (2000) The influence of low
light, drought and fertilization on transpiration and growth
in young seedlings of Quercus sobur L.. Forest Ecology and
Management 127:139-151.
59.Whitmore, T. C. (1989) Canopy gaps and the two major groups
of forest trees. Ecology 70:536-538.
60.Williams, K., S. D. Davis, B. L. Gartner and S. Karlsson
(1991) Factors limiting the establishment of a chaparral
Oak, Quercus durata Jeps. in Grassland. USDA Forest Service
Gen. Tech. Rep. PSW-126:70-73.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top