跳到主要內容

臺灣博碩士論文加值系統

(3.239.4.127) 您好!臺灣時間:2022/08/16 03:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:莊景鈞
論文名稱:木構造牆面開口對水平剪力抵抗之影響
論文名稱(外文):Effects of Openings on Horizontal Shear Resistance of Wood-framed Wall
指導教授:葉民權
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:森林系
學門:農業科學學門
學類:林業學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:73
中文關鍵詞:剪力牆剪斷強度木質構造應變片有限元素分析
外文關鍵詞:Shear wallRacking strengthWood-framed structureStrain gageFinite element method
相關次數:
  • 被引用被引用:7
  • 點閱點閱:269
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以2×4輕型木結構框架作為2.41m×3.66m實大尺寸之剪力牆之主體結構,並以闊葉樹合板及石膏板作為牆面護板,框架材採用雲杉-松-冷杉木材,針對牆面開口之尺寸、數量及位置等因子,探討所組成之合板及石膏板開口牆在承載側向力如地震力及風力時之水平剪斷抵抗效能,作為業者設計施工時之參考。窗開口寬度在120㎝以下之合板結構牆,其最大剪斷強度與未開口之牆面並無明顯差異,而開口寬度為160㎝及200㎝時,其最大剪斷強度分別較未開口之牆面減少17.8﹪及14.7﹪。門開口寬度為80㎝之合板結構牆,其最大水平剪斷強度較未開口牆降低10.5﹪,而開口寬度為200㎝及280㎝時,其最大剪斷強度分別較未開口之牆面減少46.8﹪及68.5﹪。雙窗開口之最大水平剪斷強度與單一開口之差異不大,雙門開口牆面之最大水平剪斷強度則較單一開口下降20.8﹪。
在開口位置方面,于近施力側之門開口結構牆,其最大水平剪斷強度與在中央開口者之差異不大,而在施力對側開口之合板結構牆,其最大水平剪斷強度則較中央開口低13.9﹪。門開口寬度為80㎝之石膏板非結構牆,其最大水平剪斷強度與200㎝窗開口之石膏板非結構牆之差異不大,而門開口寬度為200㎝之石膏板非結構牆則較200㎝窗開口牆面減少36%。在相同開口率的條件下,石膏板開口牆的最大水平剪斷強度為合板開口牆的39~42%。
合板開口牆之應變片測量結果顯示,在側向力350kgf條件下,寬80㎝窗開口1號應變片之最大主應變平均較其它應變片之應變量高50%,200㎝窗開口及80㎝門開口則超過340%以上。80㎝窗開口牆面各黏貼位置之最大剪斷應變值平均高於最大主應變48%,同時在其他部位形成壓縮主應變,200㎝窗開口與80㎝門開口之最大主應變則較最大剪斷應變為高。窗開口80及200㎝之牆面附近最大主應力為無開口者之1.86及4.61倍,門開口80㎝者則高達5.24倍。各測量位置之最大主應力均大於最大剪斷應力。在最大主應力發生之角度方面,除了80㎝窗與門開口1號位置處之角度較接近水平外(8~15°),其餘牆面位置之角度則在±40~45°間。
木構造開口牆面經有限元素分析所得之水平應力大多集中於開口周圍,而開口牆面實際之破壞現象亦發生於開口角落。各開口牆面1號位置之應力與應變之實測值雖皆高於分析值,但兩者之差異隨開口率的增加而減少。因此利用有限元素法分析木構造口牆之破壞位置應是可行的。
The effects of sizes and amount of opening on the lateral resistance of structural light framing shear wall were under investigation in the study. The walls with the sizes of 2.41 by 3.66 m were framed with 2X4 SPF lumber of grade No. 1 and sheathed with hardwood plywood panels. There is no significant difference in racking strength between wall specimens having window opening less than 120 cm in width and without any opening. The racking strength of wall specimens were reduced about 17.8% and 14.7% for the wall having window openings of 160 cm and 200 cm in width, respectively, as compared to the walls without any opening. The wall having door opening in 80 cm width were 10.5% lower in racking strength than that of without any opening, and 46.8% and 68.5% lower were found for the wall specimens having 200 cm and 280 cm wide door opening, respectively. While no significant difference in racking strength were found for the wall with either double or single window opening, there was 20.8% lower for the wall having double door opening than that of having single opening. The lateral resistance of walls having door opened near load application and at the center of walls showed the similar performance, but a reduction of 13.9% in racking strength were found as the door opened at the far end of load application.
The principal strain measured at the corner of 80cm wide window opening when the wall subjected to 350kgf of lateral loads was 50% higher than those measured at the other locations. Furthermore, there were 340% higher in strain measured at the corner of 200cm wide window opening and 80cm wide door opening. The maximum shear strain measured from 80cm wide window opening were 48% higher than the principal strain which were in compression. In the cases of 200cm and 80cm wide window opening, the principal strain was higher than maximum shear strain. The estimated principal stresses for 80cm and 200cm wide window opening of walls were 1.86 and 4.61 times of those walls without any opening. Similarly, it was 5.24 times in principal stress for the wall with 80cm wide door opening. The principal stresses were all higher than the values of maximum shear stresses. The orientation of principal stresses measured near the openings of walls were between 8~15 degrees, while the other location showed among —40~45 degrees. The higher values of horizontal stresses of walls with openings simulated based on the finite element analysis were distributed around the openings which matches the failure mode of the tests. Although the measured strain and stress at the corner of opening of walls were higher than the simulated results, the difference was reduced as the percentage of opening increased. Therefore, it is possible to predict the failure location of wood-framed walls with various openings under lateral loads by using finite element method.
壹、前言-----------------------------------1
貳、文獻回顧-------------------------------4
一、木構造牆面開口之設計-------------------4
1. 開口的型式------------------------------4
2. 開口的位置------------------------------7
3. 開口的大小------------------------------8
二、木構造開口牆之受力情形----------------10
1.木構造開口牆之剪力版的單位剪力----------10
2.弦桿之軸向力--------------------------- 11
3.嵌板之剪力抵抗--------------------------13
參、試驗方法------------------------------16
一、試驗材料------------------------------16
二、試驗設備------------------------------18
三、試驗方法------------------------------19
1.牆面構材之基本性質測定------------------19
2.牆面組合--------------------------------20
3.木構造牆水平剪斷強度試驗--------------- 24
4.水平載重下牆面應變與應力分布之量測------26
5.有限元素分析----------------------------31
肆、結果與討論----------------------------35
一、材料之基本性質------------------------35
1.構材之含水率--------------------------- 35
2.構材之側向與垂直引拔強度--------------- 35
二、開口尺寸對水平剪斷效能之影響----------36
1.窗開口尺寸的影響----------------------- 36
2.門開口尺寸的影響----------------------- 43
三、開口數量對水平剪斷效能之影響----------45
1.窗開口數量的影響------------------------45
2.門開口數量的影響----------------------- 46
四、開口位置對水平剪斷效能之影響----------47
1.門開口位置的影響----------------------- 47
五、不同護板對水平剪斷效能之影響----------48
1.開口牆之水平剪斷強度------------------- 49
2.開口牆之剛性係數----------------------- 50
3.開口牆之破壞--------------------------- 51
六、水平載重下木構造開口牆內部應力之分布--53
1.各施力階段之應變值----------------------54
2.開口牆各部位之應變值--------------------55
3.開口牆各部位之應力值--------------------56
七、木構造牆面開口之有限元素分析----------60
1.牆面之應力分布--------------------------60
2.應變分析值之比較------------------------63
3.應力分析值之比較----------------------- 64
伍、結論----------------------------------67
陸、引用文獻------------------------------70
中文參考文資料
1. 內政部營建署(1996)木構造建築物設計及施工技術規範。營建雜誌社 79pp.。
2. 內政部建築研究所(1999)921集集大地震建築物震害調查初步報告。177pp.。
3. 王柏村(2001)電腦輔助工程分析之實務與應用。全華科技圖書股份限公司。pp.1-1~6-48。
4. 陳漢維(1989)工業儀錶實習(上冊)。儒林圖書公司 pp.66~80。
5. 程建興(1985)電阻應變計---原理與實務。工業技術第135期 pp.44~59。
6. 張嘉祥、陳嘉基、呂國維、謝永宏(1999)九二一集集大地震學校建築震害。集集大地震災害調查研討會論文集。pp.A01~A29
7. 葉民權(1995)省產柳杉材之釘接垂直引拔抵抗研究。林產工業 14(4):551-564。
8. 葉民權(1996)省產柳杉材之釘接側向引拔抵抗研究。林產工業 15(4):595-608。
9. 葉民權、胡志鋒、林溫章、張桂英(1997)木構造剪力牆之水平剪力抵抗評估。林產工業 16(4):637-654。
10. 葉民權(1998 a)造林木應用于木質建築之剪力牆。建築研討會論文集 pp.70-81。
11. 葉民權(1998 b)合板剪力牆對水平剪力抵抗之研究。林產工業 17(3):497-508。
12. 葉民權、吳孟書、洪彥方、郭聖岳(2001)反覆載重對合板結構牆剪斷性質之影響。林產工業21(1):1-12。
13. 葉民權(2000)集集大地震對台灣不同傳統房屋建築之衝擊。中華林學季刊 32(2):267-275。
14. 蔡明哲(2000)921集集大地震造成木構造建築損壞情形。木質建築 4:140-145。
15. 賴育良、林啟豪、謝忠祐(1997)ANSYS電腦輔助工程分析。儒林圖書有限公司。pp.1-1~2-90。
16. 賴政彥(2001)不同樑腹材料對木質複合工字樑靜曲性質之影響。國立屏東科技大學森林系碩士論文。71pp.。
英文參考資料
17. Anderson, K.R. and J.D. Rose(1994)Northridge, California Earthquake. APA Report T94-5. American Plywood Association. 24pp.
18. American Society for Testing and Materials(1995 a)Standard Test Methods of Conducting Strength Tests of Panels for Building Construction. ASTM E 72-95. Philadelphia, Pa, U.S.A.
19. __.(1995 b)Standard Practice for Static Load Test of Shear Resistance of Frame Walls for Buildings. ASTM E 564-95. Philadelphia, Pa, U.S.A.
20. Arima, T.(1995)Southern Hyogo Earthquake Housing Damage Report. Proceedings of Wood-framed Housing Construction and Environments Symposium. pp.125-140.
21. Breyer, D.E.(1993)Design of Wood Structures, 3rd ed. McGraw-Hill, Inc. 902pp.
22. Diekmann, E. F.(1994)Design and code issues in the design of diaphragms and shear walls, Proceeding of a Research Needs Workshop, University of California, Forest Products Laboratory, pp8.1-8.76.
23. Jang, S. S.(2000)Racking resistance of shear walls with various sheathing materials and openings, Proceedings of World Conference on Timber Engineering, Canada, pp.5.4.2.1-5.4.2.9.
24. Kawai , N.(1998)Pseudo-Dynamic test on shear walls, Proceedings 5th World Conference on Timber Engineering, pp.412-419.
25. Ni, C., E. Karacabeyli and A. Ceccotti(1999)Design of shear walls with openings under lateral and vertical loads. Proceedings of Pacific Timber Engineering Conference, Rotorua, New Zealand, pp.360-367.
26. Sakamoto, I., Y. Ohashi, M. Koshihara, M. Minami and T. Hirata(1999)Shaking table tests on prefabricated house of wood panel system. Proceedings of Pacific Timber Engineering Conference, Rotorua, New Zealand, pp.360-367.
27. USDA(1989)Wood frame house construction,USDA Forest Service,Agriculture Handbook 73. pp.260.
28. Yeh, M. C.(2000)Racking strength of non-structural wood-framed wall. Proceedings of World Conference on Timber Engineering, July31-August3, 2000,Conada, pp.5.4.2.1-5.4.2.9.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top