跳到主要內容

臺灣博碩士論文加值系統

(44.201.72.250) 您好!臺灣時間:2023/10/04 18:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:曹文昌
研究生(外文):Wen-Chang Tsao
論文名稱:基於振動方法之結構非破壞檢測評估
論文名稱(外文):Evaluation of vibration-based method for structural nondestructive inspection
指導教授:王柏村王柏村引用關係
指導教授(外文):Bor-Tsuen Wang
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:136
中文關鍵詞:非破壞檢測自由邊界板有限元素分析實驗模態分析模態參數自然頻率模態振型頻率響應函數
外文關鍵詞:nondestructive inspectionfree-free platefinite element analysis (FEA)experimental modal analysis (EMA)modal parametersnatural frequenciesmode shapesfrequency response function (FRF)
相關次數:
  • 被引用被引用:11
  • 點閱點閱:1150
  • 評分評分:
  • 下載下載:249
  • 收藏至我的研究室書目清單書目收藏:1
本文主要探討基於振動方法於結構非破壞檢測之評估。主要運用有限元素分析及實驗模態分析,對一具破壞之自由邊界板進行非破壞檢測,應用位移振型差法、位移振型差斜率法及應變能法三種破壞預測方法,發展出一套自動化破壞檢測程式,進而找出破壞的位置。首先,進行有無破壞自由邊界板之模型驗證,根據理論得到自由邊界板之理論模態參數,接著應用有限元素分析求得有無破壞板結構之自然頻率、模態振型及頻率響應函數;接著利用傳統實驗模態分析方法,以衝擊鎚為驅動器、加速度計為感測計之方式分別對有無破壞板結構進行實驗,進而得到實驗結構板之模態參數,包括自然頻率、模態振型及阻尼比。最後,比較有無破壞板之模態參數,以完成模型驗證。其次,由數值分析在不同破壞深度、不同破壞位置、兩破壞同時發生及斜方向破壞四種情形,三種破壞預測程式均能找到實際之破壞位置。最後,舉一實際例子,三種破壞預測程式能找到破壞可能發生之位置。本文說明了應用實際量測之位移振型作為破壞預測可行性。
This work presents the evaluation of vibration-based method for structural nondestructive inspection. The finite element analysis (FEA) and the experimental modal analysis (EMA) are applied to a defected free-free plate for structural nondestructive inspection. Three faults defection program are developed to find the defected location based on the change of the mode shape difference method, the slope of mode shape difference method and the strain energy method. First, the structural model verification of both defected and undefected free-free plate is performed. The system modal parameters, including natural frequencies, mode shapes and frequency response function (FRF) can theoretically be determined by FEA. The conventional EMA is also carried out with the use of the impact hammer and accelerometer to obtain FRF as well as the modal paramaters. Both the FEA and EMA results as well as the theoretical solution from the literature are compared and verified. The modal parameters agree reasonably well. Numerical analysis to predict the defected(crack) location is also shown for the case of different crack depth, different crack locations, two cracks and skew cracks. The three faults defection program can reasonably predict the defected area for all cases. This work enhances the vibration-based method for fault diagnosis by utilizing the structural mode shapes.
目 錄
摘要 I
英文摘要 II
誌謝 III
目錄 IV
圖目錄 VII
表目錄 XI
第一章 緒論……………………………………………………...1
1.1 研究動機………………………………………………….1
1.2 文獻回顧………………………………………………….3
1.3 研究目的………………………………………………….7
1.4 全文概述………………………………………………….8
第二章 自由邊界板之模型驗證……………………………….10
2.1 模型驗證之流程圖………………………………………12
2.2 自由邊界板之理論分析…………………………………13
2.3 自由邊界板之有限元素分析…………………………....15
2.3.1 無破壞板之有限元素分析……………………….15
2.3.2 破壞板之有限元素分析………………………….17
2.4 自由邊界板之實驗模態分析……………………………19
2.4.1 無破壞板之實驗模態分析……………………….19
2.4.2 破壞板之實驗模態分析………………………….21
2.5 結果與討論………………………………………………23
2.5.1 無破壞板之模型驗證…………………………….23
2.5.2 破壞板之模型驗證……………………………….36
2.6 結論………………………………………………………45
第三章 破壞預測方法之介紹……………………………….…47
3.1 破壞預測方法之介紹……………………………………48
3.1.1 位移振型差法…………………………………….48
3.1.2 位移振型差斜率法……………………………….50
3.1.3 應變能法………………………………………….51
3.1.4 微分值積法……………………………………….55
3.2 破壞預測方法之程式流程圖…………………………...60
3.2.1 振型差法………………………………………….60
3.2.2 振型差斜率法…………………………………….61
3.2.3 應變能法………………………………………….62
3.3 結論……………………………………………………...67
第四章 破壞預測結果與討論………………………….….…..68
4.1 有限元素分析破壞預測之結果…………………………69
4.1.1不同破壞深度之預測……………………………..69
4.1.2 不同破壞位置之之預測………………………….76
4.1.3 兩破壞同時發生之預測………………………….82
4.1.4 斜破壞之預測…………………………………….87
4.2 實驗模態分析破壞預測之結果………………………...92
4.3 結論……………………………………………………...96
第五章 結論與建議………………………………………...…..98
5.1 結論……………………………………………………..98
5.2 建議……………………………………………………..99
參考文獻………………………………………………………...102
符號索引………………………………………………………..111
附錄A:其它不同破壞深度之預測結果……………………... 113
附錄B:其它不同破壞位置之預測結果……………………... 119
附錄C:其它兩個破壞同時發生之預測結果………………... 124
附錄D:其它斜破壞之預測結果……………………………... 129
附錄E:L形、斜中心破壞之預測結果……………………… 134
作者簡介………………………………………………………...136
圖目錄
圖2-1 模型驗證之流程圖………………………..…………….12
圖2-2 四邊自由邊界板之實際狀況……..…………………….15
圖2-3 無破壞自由邊界板之有限元素分割情形……..……….17
圖2-4 實際破壞之自由邊界板情形…………………………...18
圖2-5 破壞自由邊界板之有限元素模型……………………...18
圖2-6 實驗架構圖……………………………………………...20
圖2-7 實際實驗情形圖………………………………………...20
圖2-8 無破壞板之分割及編號情形…………………………...21
圖2-9 破壞板之加工情形……………………………………...22
圖2-10 無破壞板之實驗與理論頻率響應函數比較圖………...24
圖2-11 無破壞板之關聯性函數圖……………………………...26
圖2-12 破壞板之實驗與理論頻率響應函數比較圖…………...36
圖2-13 破壞板之關聯性函數圖形……………………………...38
圖3-1 自由邊界板在有無破壞情形下之振型圖(mode 1)…….48
圖3-2 x方向及y方向之振型差變化情形…..…………………49
圖3-3 程式架構流程...…..…………………..…………..63
圖4-1實際不同破壞深度之情形……..………………….70
圖4-2不同破壞深度預測之結果圖(Lx=2.4cm)……..…………73
圖4-3不同破壞深度預測之結果圖(Lx =4.8cm)………..………74
圖4-4不同破壞深度預測之結果圖(Lx =7.2cm)………………..75
圖4-5實際不同破壞位置之情..……….………………..…76
圖4-6不同破壞位置預測之結果圖(y=4.8cm)…………………79
圖4-7不同破壞位置預測之結果圖(y=9.6cm)…………………80
圖4-8不同破壞位置預測之結果圖(y=14.4cm)………………..81
圖4-9實際兩破壞同時發生之情形………………………….…82
圖4-10 兩個破壞同時發生預測之結果圖
(x=7.2cm, Ly=4.8cm;y=9.6, Lx=7.2cm)……………...85
圖4-11 兩個破壞同時發生預測之結果圖
(x=21.6cm, Ly=4.8cm;y=9.6, Lx=7.2cm)…….………86
圖4-12 實際斜破壞之情形……………………………………...87
圖4-13 斜方向破壞預測之結果圖(x=6cm, Lx=6cm, Ly=6cm)....90
圖4-14 斜方向破壞預測之結果圖(x=18cm, Lx=6cm, Ly=6cm)..91
圖4-15 實際板子破壞之情形…………………………………...92
圖4-16 預測實驗破壞之結果圖(y=9.6cm, Lx=7.2cm)………….95
圖A-1實際不同破壞深度之情形……………………....113
圖A-2 Case x3 - Ly1 ……………………………………………...114
圖A-3 Case x3 - Ly2………………………………………………114
圖A-4 Case x3 - Ly3……………………………………………....115
圖A-5 Case x3 - Ly4………………………………………………115
圖A-6 Case y3 - Lx1………………………………………………116
圖A-7 Case y3 - Lx2………………………………………………116
圖A-8 Case y3 - Lx3………………………………………………117
圖A-9 Case y3 - Lx4………………………………………………117
圖A-10 Case y3 - Lx5……………………………………………..118
圖A-11 Case y3 - Lx6……………………………………………..118
圖B-1 實際不同破壞位置之情形………………….…....119
圖B-2 Case x1 - Ly4………………………………….…………...120
圖B-3 Case x2 - Ly4………………………………………………120
圖B-4 Case x3 - Ly4……………………………………….……...121
圖B-5 Case x4 — Ly4……………………………………….……..121
圖B-6 Case y1 - Lx5……………………….…………….….….…122
圖B-7 Case y2 - Lx5………………………….………….….….…122
圖B-8 Case y3 - Lx5………………………….…………….……..123
圖B-9 Case y4 - Lx5………………………………………..……..123
圖C-1實際兩破壞同時發生之情形…………………………..124
圖C-2 Case x2 - y1……………………………………...………..125
圖C-3 Case x2 - y2………………………………………...……..125
圖C-4 Case x2 - y3……………………………………….………126
圖C-5 Case x2 - y4…………………………………………….…126
圖C-6 Case y4 - x1………………………………………….……127
圖C-7 Case y4 - x2……………………………………….………127
圖C-8 Case y4 - x3…………………………………………….…128
圖C-9 Case y4 - x4…………………………………………….…128
圖D-1實際斜破壞之情形………………………….…………...129
圖D-2 Case x1(左下右上)…………………………..…….……..130
圖D-3 Case x3(左下右上)……………………………….…..…..130
圖D-4 Case x5(左下右上)……………………………….………131
圖D-5 Case x2(左上右下)……………………………….………131
圖D-6 Case x3(左上右下)……………………………….………132
圖D-7 Case x4(左上右下)………………………………...……..132
圖D-8 Case x5(左上右下)……………...………………..………133
圖D-9 Case x6(左上右下)……………………………….………133
圖E-1實際L形、斜中心斜破壞之情形………….………….134
圖E-2 Case L形破壞……………………………………………135
圖E-3 Case斜中心破壞……………………….………………..135
表目錄
表2-1 模態指標(i,j)尺寸參數表(a/b=1.5)………………….14
表2-2 自由邊界板之材料性質表……………………………...16
表2-3 無破壞板之理論自然頻率表…………………………...27
表2-4 四種元素之分析性質表………………………………...28
表2-5 各元素與無破壞板之理論自然頻率誤差百分比表…...29
表2-6 無破壞板之FEA(SHELL63)自然頻率表………………29
表2-7 無破壞板之FEA與EMA自然頻率誤差百分比……….30
表2-8 無破壞板之阻尼比誤差百分比(%)…………………….31
表2-9 無破壞板之FEA與EMA模態振型比較對照表……….32
表2-10 無破壞板之實驗振型與理論振型之MAC……………..35
表2-11 無破壞板之實驗振型與理論振型之MSF..…………….35
表2-12 破壞板之自然頻率誤差百分比………………………...39
表2-13 破壞板之阻尼比誤差百分比(%)……………………….40
表2-14 破壞板之FEA與EMA模態振型比較對照表…….……41
表2-15 破壞板之實驗振型與理論振型之MAC………………..44
表2-16 破壞板之實驗振型與理論振型之MSF………………...44
表A-1 其它不同破壞深度之情形表…………………………..113
表B-1 其它不同破壞位置之情形表…………………………..119
表C-1 其它兩個破壞同時發生之情形表……………………..124
表D-1 其它斜破壞之情形表…………………………………..129
表E-1 L形、斜中心破壞之情形表……………………………134
[1] 王智中、涂季平、陳德煒、劉思遠,2000,「時頻分析法應用於旋轉機械故障診斷之研究」,中華民國振動與噪音工程學會第八屆學術研討會論文集,屏東,第1-5頁。
[2] 王栢村,1996,實驗模態分析,課程講義,屏東。
[3] 王栢村,梁偉光,1997,「智慧型材料結構系統於非破壞檢測應用」,碩士論文,國立屏東技術學院,屏東。
[4] 王栢村,梁偉光,2001,「基於模態參數之結構缺陷預測」,檢測科技,第18卷,第6期,第204-214頁。
[5] 王栢村、王重杰,1995,「應用壓電材料於結構之實驗模態分析」,碩士論文,國立屏東技術學院,屏東。
[6] 王栢村、陳榮亮,1997,「應用壓電材料於簡支板之實驗模態分析」,碩士論文,國立屏東技術學院,屏東。
[7] 王栢村、陳榮亮,1997,「簡支板之實驗模態分析」,國立屏東科技大學學報,第六卷,第四期,第273-281頁。
[8] 侯國琛,1992,「非破壞性檢測法」,財團法人徐氏基金會,台北。
[9] 編輯部,1994,「非破壞檢測之簡介與應用」,機械月刊,第二十卷,第十期,第258-266頁。
[10] 鄭泗滄、張枝光、許龍池,1991,「結構振動之非接觸式光學量測與驗證」,科儀新知,第十二卷,第五期,第56-61頁。
[11] 謝文雄,1994,「工程品質的看門者-介紹非破壞檢測」,核能天地,第三十卷,第三期,第9-12頁。
[12] 謝文雄,1994,「找出缺陷,保障品質-非破壞檢測的應用原理及各類之方法介紹」,核能天地,第三十卷,第三期,第13-16頁。
[13] B&K Inc., 1992, Multichannel Analysis System Type 3550 Documentation.
[14] Bellman, R. E. 1973, “Methods of Nonlinear Analysis,” Academic Press, New York.
[15] Bellman, R. E., and J. Casti, 1971, “Differential Quadrature and Long-term Integration,” The International Journal of Mathematical and Application, Vol. 34, pp. 235-238.
[16] Bellman, R. E., B. G. Kashef, and J. Casti, 1972, “Differential Quadrature: A technique for the rapid solution of nonlinear partial differential equation,” The International Journal of Compute Physical, Vol. 10, pp. 40-52.
[17] Bert, C. W., S. K. Jang, and A. G. Striz, 1988, “Two Approximate Methods for Analysis Free Vibration of Structural Components,” AIAA Journal, Vol. 26, pp. 612-618.
[18] Blevin, R. D., 1995 Formulas for Natural Frequency and Mode Shape, Krieger Publishing Company, New York, pp. 233-290.
[19] Ceravolo, R., A. D. Stefano, and P. d. Torino, 1995, ”Damage Location in Structural Through a Connectivistic Use of FEM Modal Analyses,” The International Journal of Analytical and Experimental Modal Analysis, Vol. 10, No. 3, pp. 178-186.
[20] Civan, F. and C. M. Sliepcevich, 1984, “Differential Quadrature for multidimensional problems,” The International Journal of Mathematical Analysis Application, Vol. 34, pp. 235-238.
[21] Cornwell, P. J., S. W. Dobeling, and C. R. Farrar, 1998, “Application of The Strain Energy Damage Detection Method to Plate-Link Structures,” Journal of The Sound and Vibration, Vol. 224, No. 2, pp. 1312-1318.
[22] Doyle, J. F., 1993, ”Wave Propagation in a Beam with Transverse Crack,” Proceeding of the Spring Conference on Experimental Mechanics Conference, pp. 759-768.
[23] Dry, C., and W. McMillan, 1998, “A Novel Method to Detect Crack Location and Volume in Opaque and Semi-Opaque Brittle Materials,” Smart Mater Structural, Vol. 6, pp. 35-39.
[24] Ewins, D. J., 1986, Modal Testing:Theory and Practice, Research Studies Press LTD., Letchworth Hertfordshire, England.
[25] Fang, J., Y. P. Zhao, Z. D. Jiang, and J. Qi, 1993, ” On Interaction of Flexural Wave with Edge Cracks of Cantilever Beam under Impact Load,” Proceeding of the Spring Conference on Experimental Mechanics Conference, pp. 786-795.
[26] Garcia, G. V., R. Osegueda, and D. Meza, 1999, “Damage Detection Comparison Between Damage Index Method and ARMA Method,” Proceeding of The 17th International Modal Analysis Conference, Vol. 1, pp. 593-598.
[27] Gibson, R. F., and Y. F. Wen, 1993, ”Evaluation of Boundary Conditions for a Composite Plate Vibration Test,” Proceeding of the Spring Conference on Experimental Mechanics Conference, pp. 19-27.
[28] Heylen, W., and Janter, T., 1990, "Extensions of the Modal Assurance Criterion," Transactions of the ASME, Vol. 112, pp. 468-472.
[29] Lee, H. P. and T. Y. Ng, 1994, “Natural Frequencies and Modes for the Flexural Vibration of a Cracked Beam,” Applied Acoustics, Vol. 42, pp. 151-163.
[30] Liew, K. M., and T. M. Teo, 1997, “Modeling Via Differential Quadrature Method: Three Dimensional Solutions for Rectangular Plates on Winkler Foundations,” Computer Methods in Applied Mechanics and Engineering, Vol. 159, pp. 369-381.
[31] Liew, K. M., J. B. Han, Z. M. Xiao, and H. Du, 1996, “Differential Quadrature Method for Mindlin Plates on Winkler Foundations,” The International Journal of Mechanical Sciences, Vol. 38, No. 4, pp. 405-421.
[32] LMS Inc., 1993, LMS CADA-PC User Manual.
[33] Maria, L. M. and R. S. Ricardo, 1999, "The Influence of Noise in FRF Based Damage Detection Techniques: An Initial Study," Proceeding of The 17th International Modal Analysis Conference, Vol. 1, pp. 622-627.
[34] Martin, M. T., and J. F. Doyle, 1994, ”Crack Detection in Framed Structures,” Proceeding of the Spring Conference on Experimental Mechanics Conference, pp. 768-775.
[35] Park, Y., 1994, “Improved Estimation of Frequency Response Function,” The International Journal of Analytical and Experimental Modal Analysis, Vol. 9, No. 2, pp. 99-110.
[36] Quan, J. R. and C. T. Chang, 1989, “New Insights in Solving Distributed System Equations by The Quadrature Method-I. Analysis,” Computer Chemical Engineering, Vol. 13, pp. 779-788.
[37] Ronald, F. G., and Y. F. Wen, 1993, “Evaluation of Boundary Conditions for a Composite Plate Vibration Test,” Proceeding of the Spring Conference on Experimental Mechanics Conference, pp. 19-27.
[38] Salawu, O. S., 1998, “Detection of Structural Damage Through Changes in Frequency: a Review,” Journal of The Engineering Structures, Vol. l9, NO. 19, pp. 718-723
[39] Schulz, M. J., A. S. Naser, P. F. Pai, and M. S. Linville, 1997, “Detecting Structural Damage Using Transmittance Functions,” Proceeding of The 15th International Modal Analysis Conference, Vol. 1, pp. 638-644
[40] Sherbourne, A. N., and M. D. Pandey, 1991, “Differential Quadrature Method in the Bucking Analysis of Beam and Composite Plates,” The International Journal of Compute Structural, Vol. 40, No. 4, pp. 903-913.
[41] Shu, C., and B. E. Richards, 1990, “High Resolution of Natural Convection in a Square Cavity by Generalized Differential Quadrature,” Proceeding of The 3th International Modal Analysis Conference. On Advances in Numerical Methods in Engineering: The Theory and Application, pp. 978-985.
[42] Shu, C., and B. E. Richards, 1992, “Application of Generalized Differential Quadrature to Solve Two-dimensional Incompressible Navier-Stokes Equations,” The International Journal of Numerical Methods Fluids, Vol. 15, pp. 791-798.
[43] Shu, C., and H. Xue, 1999, “Solution of Helmholtz Equation by Differential Quadrature Method,” Computer Methods in Applied Mechanics and Engineering, Vol. 175, pp. 203-212.
[44] Sohn, H. and K. H. Law, 1999, “Application of Ritz Vector to Damage Detection for a Grid-Type Bridge Model,” Proceeding of The 17th International Modal Analysis Conference, Vol. 1, pp. 615-621.
[45] Surace, C., K. Worden, and G. Tomlinson, 1997, “A Novelty Detection Approach to Diagnose Damage in a Cracked Beam,” Proceeding of The 15th International Modal Analysis Conference, Vo2. 1, pp. 947-953.
[46] Topole, K. G., and N. Stubbs, 1995, ”Nondestructive Damage Evaluation in Complex Structures from a Minimum of Modal Parameters,” The International Journal of Analytical and Experimental Modal Analysis, Vol. 10, No. 2, pp. 95-103.
[47] Tran, D., and J. He, 1998, “Structural Damage Detection in a Simple Cantilever Plate,” Proceeding of The 16th International Modal Analysis Conference, Vol. 1, pp. 369-373.
[48] Trethewey, M. W., and Cafeo, J. A., 1992, "Tutorial:Signal Processing Aspects of Structural Impact Testing," The International Journal of Analytical and Experimental Modal Analysis, Vol. 7, No. 2, pp. 129-149.
[49] Williams, E. J., A. Messina, and B. S. Payne, 1997, “A Frequency-Change Correlation Approach to Damage Detection,” Proceeding of The 15th International Modal Analysis Conference, Vol. 1, pp. 652-657.
[50] Worden, K., J. R. Wrightet, M. A. Al-Hadid, and K. S. Mohammdd, 1994, "Experimental Identification of Multi Degree-of-Freedom Nonlinear Systems Using Restoring Force Methods," The International Journal of Analytical and Experimental Modal Analysis, Vol. 9, No. 1, pp.35-55.
[51] Zimmerman, D. C., G. H. James, and T. T. Cao, 1999, “An Experimental Study of Damage Detection Using Modal, Strain, and Ritz Properties,” Proceeding of The 17th International Modal Analysis Conference, Vol. 1, pp. 586-592.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top