跳到主要內容

臺灣博碩士論文加值系統

(3.239.4.127) 您好!臺灣時間:2022/08/16 04:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡盈吉
研究生(外文):Yng-Jyi Tsai
論文名稱:應用有限元素法於石英晶體微量天平之模擬與設計
論文名稱(外文):Applying Finite Element Mthod on Simulation and Design of Quartz Crystal Microbalance
指導教授:吳德和
指導教授(外文):Der-Ho Wu
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:165
中文關鍵詞:石英晶體微量天平電腦輔助設計田口品質工程法
外文關鍵詞:QCMCAD/CAETaguchi method
相關次數:
  • 被引用被引用:5
  • 點閱點閱:349
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
近年來,石英晶體微量天平(QCM)廣泛應用於各種生化上的分析,如病毒、細菌、免疫球蛋白的檢測,乃至環境氣體與液體的鑑定等,其主因不外於QCM擁有高靈敏度、構造簡單、低成本,且能進行迅速的檢測等優點。
本研究的目的乃建立一套以電腦輔助設計(CAD/CAE)軟體進行石英晶體微量天平設計的方法,以供日後相關設計研發上的參考。在本文中我們利用有限元素分析(finite element analysis , FEA)的方法針對QCM其振盪頻率(resonant frequency)受其電極厚度及被覆質量的變化的影響進行研究,其結果並與理論值相比較。此外文中也嘗試利用田口品質工程法(taguchi method)分別針對QCM的Q值(quality factor)與靈敏度做最佳化的設計,最後本文藉由半導體製程模擬軟體-CoventorWare來模擬QCM的實際製程
Recently, quartz crystal microbalance(QCM) is widely applied in many fields of biochemical analysis, such as the detection of bacteria, virus, immumoglobulin and the identification of environmental gas and fluid. Owing to have many advantages, such as high sensitivity, simplicity, low cost and ability for rapid measurement.
The purpose of this study is to establish a method of designing QCM by CAD/CAE numerical packages and to be the consideration of designing process in the future. The effects of QCM’s resonant frequency influenced by the variation of the thickness of electrode and coated mass is studied by finite element analysis(FEA) and compared with theoretical values in this study. Moreover, Taguchi method is applied to optimize the Q factor and sensitivity of QCM. Finally, the semiconductor manufacture process simulation package , CoventorWare , is used to simulate QCM’s manufacture process in this study.
摘要………………………………………………………………. Ι
英文摘要………………………………………………………… ΙΙΙ
誌謝…………………………………………………………...…. ΙV
目錄………………………………………………………………. V
圖目錄…………………………………………………………..VΙΙΙ
表目錄…………………………………………………………..XΙΙΙ
第一章 緒論………………………………………………………1
1.1 研究動機…………………………………………………...1
1.2 文獻回顧…………………………………………………...3
1.3 全文概述…………………………………………………...9
第二章 石英晶體微量天平之原理與特性……………………...11
2.1 前言………………………………………………………..11
2.2 石英結構與振動特性……………………………………..12
2.3 石英壓電效應與壓電方程式……………………………..17
2.3.1 壓電現象………………………………………………17
2.3.2 壓電方程式……………………………………………22
2.4 質量負載效應……………………………………………25
2.5 等效電路…………………………………………………28
第三章 石英晶體微量天平頻率-質量變化模擬分析…………31
3.1 前言…….………………………………………………...31
3.2 AT-cut壓電石英晶體之振動模態與簡諧分析………….32
3.3 QCM之振動模態分析與簡諧分析……………………...38
3.4 QCM頻率-質量變化關係………………………………..43
3.4.1 電極厚度與頻率變化的關係………………………...43
3.4.2 被覆質量與頻率變化的關係………………………...49
第四章 石英晶體微量天平之最佳化設計………….………….55
4.1 前言……………………………………………………….55
4.2 田口法原理……………………………………………….56
4.2.1品質特性的種類……………………………………….57
4.2.2直交表………………………………………………….60
4.3 參數之最佳化程序……………………………………….61
4.3.1 定義目標函數…………………………………………61
4.3.2 定義設計參數與水準…………………………………61
4.3.3 選擇直交表…………………………………………..61
4.3.4 平均數分析…………………………………………..62
4.3.5 變異數分析…………………………………………..63
4.4 田口法的應用…………………………………………....67
4.4.1靜態最佳化計………………………………………...67
4.4.2動態穩健化設計……………………………………...88
第五章 石英晶體微量天平之製程模擬………………………111
5.1 前言……………………………………………………...111
5.2 QCM製程模擬…………………………………………..112
5.3 結論……………………………………………………...126
第六章 結論與建議……………………………………………127
6.1 結論……………………………………………………...127
6.2 建議……………………………………………………...129
參考文獻………………………………………………………..131
符號索引………………………………………………………..137
附錄A…………………………………………………………..140
作者簡介………………………………………………………..165
1.Rechnitz, C. A., 1988, C&EN, Vol. 5, pp. 24-36.
2.楊朝欽,1996,壓電石英晶體上電極界面的修飾與其在生化檢測上的應
用,碩士論文,國立成功大學醫學工程研究所。
3.黃錦城,1997,「壓電晶體生物感測器之原理與應用」,食品工業月
刊,第29卷,第8期,第8-16頁。
4.J. W. Marsen, M. C. Smit, and J. Matze, 1957, “The Raman and
Infro-red Spectra of Some Compounds (iH7C3O)2PXO,” Recueil,
Vol. 76, pp. 713-723.
5.E. A. Gerber and R. A. Sykes , 1966, Proceedings of The IEEE,
Vol. 54,No. 2, pp. 103.
6.Sauerbrey, G., 1959, “Verwendung von Schwingquarzen zur
Microwagung,” Z. Phys., Vol. 155, pp. 206-222.
7.C. Lu, and A. W. Czanderna(Eds.), 1984, “Application of
Piezoelectric Quartz Crystal Microbalance,” Elsevier Science
Publishing Company Inc. .
8.張怡南、羅仲智,2000,「壓電石英晶體生物感測器」,化學,第58
卷,第1期,第187-190頁。
9.Ashok Kumar, 2000, “Biosensors Based on Piezoelectric Crystal
Detectors : Theory and Application,” JOM., Vol. 52, No. 10.
10.Roedere, J. E., Bastiaans, G. J., 1983, Anal. Chem., Vol.55,
pp.2333-2336.
11.Kanazawa, K. K., Gordon, J. G. Jr., 1985, Anal. Chim. Acta.,
Vol. 175, pp. 99-105.
12.Thompson, M., Arthur, C. L., Dhali, G. K., 1986, Anal. Chem.,
Vol. 58, pp. 1206-1209.
13.Clark, L. C., and Lyons, C., 1962, Ann. N.Y. Acad. Sci., Vol.
102, pp. 29-45.
14.T. Nomura, M. Lijima, 1981, “Electrolytic Determination of
Nanomolar Concentration of Silver in Solution with A
Piezoelectric Quartz Crystal,” Anal. Chim. Acta., Vol. 131,
pp.97-102.
15.Muramatsu, H. K., Kajiwara, K. Tamiya, E., Karube I., 1986,
Anal. Chim. Acta., Vol. 188, pp. 257-261.
16.Muramatsu, H. K., Dicks, J. M., Tamiya, E., Karube, I., 1989,
Anal. Chem., Vol. 59, pp. 2760-2763.
17.Muramatsu, H. K., Tamiya, E., Suzuki, M., Karube, I., 1989,
Anal. Chem. Acta., Vol. 217, pp. 321-326.
18.Joseph Wang, Mian Jiang, Emil Palecek, 1999,“Real-time
Monitoring of Enzymatic Cleavage of Nucleic Acids Using A
Quartz Crystal Microbalance,” Bioelectorchemistry and
Bioenergetics, Vol. 48, pp. 477-480.
19.M. Teresa, S. R. Gomes, P. Sergio, T. Nogueira, Joao A. B. P.
Oliverira, 1999, “Study on The Quantification of CO2, SO2,
NH3 and H2S with A Single Coated Piezoelectric Quartz
Crystal,”Chemical Sensors and Systems, pp. 125-128.
20.S. Goka, K. Okabe, Y. Watanabe, and H. Sekimoto, 1999,“Fun-
damental Study on Multi-mode Quartz Crystal Gas Sensors,”
IEEE Ultrasonics Symposium, pp. 489-492.
21.Teresa A. P., Rocha-Santos, M. Teresa S. R. Gomes, Armando
C. Duarte, Joao A. B. Pereia Oliveria, 2000,“A Quartz
Crystal Microbalance Sensors for Determination of
Nitroaromatics in Landfill Gas,” Talanta, Vol. 51, pp. 1149- 1153.
22.洪裕杰,2000,石英晶體微天平用於乙醇氣體感測器之設計與量測,
碩士論文,國立成功大學電機工程研究所。
23.F. Pascal-Delannoy, B. Sorli, A. Boyer, 2000,“Quartz Crystal
Microbalance(QCM) Used as Humidity Sensor,” Sensors and
Actuators A, Vol. 84, pp. 285-291.
24.Subrayal M. Reddy, 2000,“Detection of Phenol in Aqueous
Solution Using An AT-cut Quartz Thickness Shear Mode
Sensor,”Materials Science and Engineering C, Vol. 12, pp.
23-28.
25.Yong-Kong Yong, and James, T. Stewart, 1992, “Thickness-
Shear Mode Shape and Mass-Frequency Influenced Surface of
A Circular and Electroded AT-cut Quartz Resonator,” IEEE
Transaction on Ultrasonics, Ferro-Electrics, and Frequency
Control, Vol. 39, No. 5, pp. 609-616.
26.J. Zelenka, 1997,“The Influence of Electrodes on The Freque-
ncy-temperature Characteristics of Rotated Y-cut Quartz Reso-
nators,” Ultrasonics, Vol. 35, pp. 171-177.
27.張峰誌,1998,AT切面石英振盪器振動模態之分析,碩士論文,國立
成功大學電機工程研究所。
28.Hong-Tao Sun, Marco Faccio, Carlo Cantalini, Mario Pelino,
1996, “Impedance Analysis and Circuit Simulation of Quartz
Resonator in Water at Different Temperature,” Sensors and
Actuators B, Vol. 32, pp. 169-173.
29.T. Nakamoto, K. Nakamura, and T. Moriizumi, 1996, “Study of
Oscillator-Circuit Behavior for QCM Gas Sensor,” IEEE Ultra-
Sonics Symposium, pp. 351-354.
30.Mitsuo Nakazawa, 1998, “Analysis of Film Thickness Depend-
ence on Electrical Equivalent Model for AT-cut Resonators,”
IEEE Ultrasonics Symposium, pp. 925-930.
31.David Mendez Soares, Mario Alberto Tenan, Sabine Wasle,1998,
“Determination of The Electromechanical Parameters of
The Electrochemical Crystal Microbalance,” Electrochimica
Acta, Vol. 44, pp. 263-268.
32.J. S. Danel and G. Delapierre, 1991,“Quartz : A Material for
Microdevices,” J. Micromech. Microeng., Vol. 1, pp. 187-198.
33.Klas Hjort, Greger Thornell, Reimar Spohr, and Jan-Ake
Schweitz, 1996, “Heavy Ion Induced Etch Anisotropy in
Single Crystalline Quartz,” IEEE, pp. 267-271.
34.Shigeyoshi Goka, Hitoshi Sekimoto, and Yasuaki Watanabe,
1999, “Experumental Study of Vibrations of Mesa-shaped
AT-cut Quartz Plates,” IEEE IFCS, pp. 441-444.
35.I. I. Postnikov, 1994,“Computer Analysis of High-frequency
Quartz Resonators,” IEEE International Frequency Control
Symposium, pp. 209-222.
36.Bernd Zimmermann, Ralf Lucklum, Peter Hauptmann, Jens Rabe,
Stepphanus Buttgenbach, 2001, “Electrical Characterisation
of High-frequency Thickness-shear-mode Resonators by
Impedance Analysis,” Sensors and Actuators B, Vol. 76,
pp. 47-57.
37.Scheller, F., F. Schebert, D. Preiffer, R. Hintsche, I.
Dransfeld R. Renneberg, U. Wollenberber, K. Riedel, M.
Pavlova, M. Kuhn, H. G. Muller, Tan, W. Hoffman, and W.
Moritz, 1989,“Research and Development of Biosensors,” A
Review. Analyst,Vol. 144, pp. 653-662.
38.高至鈞、汪健民,1989,「壓電陶瓷縱談」,材料與社會,第
26期,第4-11頁。
39.吳朗,1994,電子陶瓷-壓電,全欣圖書公司,第7-25頁。
40.Marc Madou, 1997, Fundamentals of Microfabrication, CRC
Press LLC, pp. 413-415.
41.姜庭隆譯,2001,半導體製程,滄海書局,第267-281頁。
42.羅錦興,1999,田口品質工程指引,中國生產力中心,第1-37頁
43.Phillip J. Ross, 1996, Taguchi Techniques for Quality
Engineering, McGraw-Hill Inc., pp. 1-20.
44.陳榮盛、陳界文、梁智翔,1996,「以田口法實驗計劃法分析PU+金雲
母材質用於射出成型加工之製程」,力學期刊,第12卷,第2期,第
243-253頁。
45.賴富信,2000,壓電薄膜加速度計之設計與結構製作,碩士論文,國
立台灣科技大學機械工程研究所。
46.蔡宗學、簡文通、吳德和,2001,「田口法應用於車削SKD61模具鋼之
最適條件分析」,屏東科技大學學報,第10卷,第4期,第305-314
頁。
47.李輝煌,2000,田口方法品質設計的原理與實務,高立圖書有限公
司,第85-117頁。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top