跳到主要內容

臺灣博碩士論文加值系統

(18.208.126.232) 您好!臺灣時間:2022/08/12 01:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許志成
研究生(外文):Chih-Chen Hsu
論文名稱:化學動力模式於噴泉式流體化床之應用
論文名稱(外文):Application of the Chemical Kinetic Modeling in A Laboratory Scale Spouted Bed Incinerator
指導教授:林傑林傑引用關係
指導教授(外文):Chieh Lin
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:環境工程與科學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:118
中文關鍵詞:化學動力模式噴泉式流體化床不完全燃燒產物
外文關鍵詞:Chemical Kinetics ModelSpouted Bed CombustorProducts of Incomplete Combustion
相關次數:
  • 被引用被引用:3
  • 點閱點閱:193
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
焚化處理為目前解決垃圾問題的有效方案,廢棄物經由加溫裂解與燃燒可直接或間接的破壞化學結構,達到減少廢棄物減量、減積及安定化的目的,特別對於有害廢棄物能有效的處理,降低有害物質殘留,而不當的操作過程容易降低其處理功能。本研究利用化學動力電腦模式CHEMKIN II及噴泉式流體化床(Spouted Bed)焚化系統,以溫度變化為主要模擬條件,模擬後燃燒區不完全燃燒產物之形成與破壞趨勢,甲苯氧化反應機制依據Emdee et al. (1992)及Lindstedt et al. (1996)所提出有關甲苯(Toluene)、苯(Benzene)、苯甲醛(Benzaldehyde)及相關之自由基反應機制,模擬甲苯焚化狀況。藉由模式結果與實驗燃燒結果之比較,探討本研究所建立之甲苯氧化反應機制於噴泉式流體化床得到之模擬值與實驗值於反應過程中的相關性,研究結果顯示後燃燒區爐心及爐壁之模擬可得到相當符合的濃度趨勢,提供模擬值與實驗值間作一合理之濃度趨勢預測。後燃燒區爐心及爐壁可視為一穩定流體柱塞流反應器,以SENKIN Model模擬之甲苯及其熱裂解與含氧物種等不完全燃燒產物之濃度趨勢與實驗值類似,模式中甲苯氧化基元反應利用敏感度分析結果,可發現下列基元反應
C6H5CH2?+H?=C6H5CH3,
C6H5CH3+OH?=C6H5CH2?+H2O
C6H5CH2?+HO2?=C6H5CHO+H?+OH?
C6H5CHO +OH?= C6H5CO? +H2O
C6H5?+C6H5CH3=C6H6+C6H5CH2?
C6H5?+H?=C6H6
於460~1000K之溫度範圍內,為甲苯、苯及苯甲醛主要生成與破壞機制。
關鍵字:化學動力模式(Chemical Kinetics Model)、噴泉式流體化床(Spouted Bed)、不完全燃燒產物(Products of Incomplete Combustion;PICs)
Due to improperly design or operate an incinerator, the pollutants emission have found in the exhaust stream of waste incineration system. The major concern regarding organic emissions during hazardous waste incineration is to form the products of incomplete combustion(PICs). Trend and distribution of those undesirable and thermally stable PICs from aromatic hydrocarbons incineration have been investigated by using a laboratory scale spouted bed combustor. The objective of this study is to manipulate the degree of formation and/or destruction of PICs by adjusting combustion parameters with respect to the combustion zone and the post combustion regime. Results indicate that the formation of these by-products is highly dependent upon the nature of fuel and the combustion operating parameters (i.e., equivalence ratio, bed temperature... etc.). The amount and composition of PICs are sensitive to the characteristics of physical mixing and chemical reaction kinetics. Model fuel-toluene premixed with air was combusted in our spouted bed combustor. The disturbance of flue gas sample matrix could be introduced from the process of combustion, the sampling period, the clean up and pretreatment of sample even and the analysis steps. How to promote the monitoring and analysis efficiency for PICs with respect to the detectable range and the quantitative accuracy will be discussed in this contribution.The results show that benzyl and benzene were the major intermediates in oxidation process of toluene under some pyrolysis conditions. Benzaldehyde was the primary oxygenated species. Comprehensive kinetic modeling of PICs formation is the scope of present study; therefore using a detail chemical kinetic mechanism to calculate the major PICs formation and destruction in the post combustion regions will be accounted. The predictive results will be related to the pathways to destruct toluene and the major reaction steps will be discussed in this study. A well developed computation model CHEMKIN is adopted to calculate the PICs concentration under the isothermal and homogeneous conditions in the temperature range similar to the post-combustion region. The comparison between experimental results and model predictions is discussed. The toluene oxidation mechanism, which constructed by Emdee et al., is modified to predict the toluene combustion. The discrepancy between the experimental results and the model predictions is possible elaborated while the heterogeneous effects dominate the experimental situation. In addition the assumption of the isothermal and homogeneous conditions for the model does lead to the forward experiments should be designed to prove the trends of the PICs formation or destruction.
Keywords: PICs; Products of Incomplete Combustion, Spouted Bed Combustor, Chemkin; Chemical Kinetic Model
中文摘要………………………………..……………………..I
英文摘要………………………………………………………Ⅳ
誌謝 …………………………………………………………Ⅵ
目錄 …………………………………………………………Ⅷ
表目錄 ………………………………………………………ⅩⅢ
圖目錄 ………………………………………………………ⅩⅣ
第一章 前言……………………………………………………1
1.1 研究目的 ………………………………………2
1.2 研究內容 ………………………………………4
第二章 文獻回顧 …………………….………………… ……5
2.1甲苯之物理及化學性質 ………………………5
2.2 甲苯的毒性及健康危害………………………6
2.2.1 急毒性……………………… …………6
2.2.2 毒性或長期毒性方面 …………………7
2.2.3代謝途徑…………………… …………7
2.3 噴泉式流體化床焚化爐 ….……………………9
2.3.1 燃燒效能指標及焚化操作參數………12
2.3.2 噴泉式流體化床於焚化上之應用 …13
2.3.3 不完全燃燒產物之形成與破壞 ……14
2.4 燃燒反應機構與模式 ……………………15
2.4.1 噴泉式流體化床之氧化特性 ……17
2.4.2 甲苯之氧化反應特性 ………………21
2.4.2.1 甲苯之低溫氧化特性 ……27
2.4.2.2 甲苯之高溫氧化特性 ……29
2.5 不完全燃燒產物生成 ………………………36
2.5.1 不完全燃燒產物生成 ………………36
2.6 電腦模擬推估方法 …………………………39
2.6.1 電腦模擬軟體 ………………………40
2.6.2 電腦模擬之反應機制 ………………40
2.6.3 多重相性焚化之模擬 ………………42
第三章 實驗器材及方法……………………………………43
3.1 實驗系統……………………………………43
3.1.1 焚化系統……………………………44
3.1.1.1 燃料空氣混合預熱區……45
3.1.1.2 燃燒區……………………46
3.1.2 採樣監測及分析系統………………47
3.1.2.1 溫度監測及基本氣體之分析…48
3.1.2.2 採樣系統…………………48
3.2 實驗操作……………………………………50
3.2.1 反應器操作參數……………………50
3.2.2 反應器點燃及關閉程序……………51
3.3 電腦模式推導方法…………………………52
3.3.1 模式進行步驟………………………53
3.3.2 模式推估方法………………………54
3.3.3 理論滯留時間………………………55
3.3.4 溫度定義方式………………………55
第四章 結果與討論…………………………………………56
4.1 氣相化學反應之模擬基礎……………………56
4.2 化學反應模擬軟體……………………………60
4.3 反應機制數值求解程序………………………63
4.4 敏感度分析程式………………………………66
4.4.1 敏感度分析及敏感度係數……………66
4.4.2 敏感度分析程式………………………68
4.4.3 敏感度分析程序………………………70
4.5甲苯氧化反應之電腦模擬……………………71
4.6 焚化過程之溫度變化…………………………71
4.7 甲苯焚化之不完全燃燒產物氧化反應機制…74
4.7.1 自由基及不完全燃燒產物之形成與破壞…76
4.7.2甲苯氧化反應之電腦模擬與實驗值之比較…87
4.8 敏感度分析……………………………………89
4.8.1甲苯氧化中C6H5CH3相關之重要反應式………90
4.8.2甲苯氧化中C6H5CHO相關之重要反應式 ……92
4.8.3甲苯氧化中C6H6相關之重要反應式…………94
第五章 結論與建議 ………………………………………96
5.1結論 …………………………………………96
5.2建議 …………………………………………97
參考文獻……………………………………………………99
附錄……………………………………………………………105
附錄一、甲苯氧化反應機構…………………………………105
附錄二、樣品處理與分析……………………………………110
1. 王惠、楊海峰、翟高紅、文振翼、冉新權、史啟楨,(2001) "碳源甲基苯熱裂解機理的密度泛函動力學研究",化學通報,Vol.59,pp17-21
2. 行政院勞工委員會勞工安全衛生研究所編印,(2001)”作業環境有害物暴露調查與對策技術資料料(二)甲苯等有機溶劑(汽車塗裝業)”
3. 吳友平,(1995)“Detailed Reaction Mechanism for Oxidation of Chlorinated Hydrocarbons”, 國科會成果報告,NSC83-0402-E197-00;NSC84-2214-E197-001
4. 李志文,(2000)”一氯乙烯在高週波電漿中之反應機制” ,國立成功大學環境工程學系碩士學位論文
5. 財團法人工業技術研究院工業安全衛生技術發展中心,(2000)”甲苯物質安全資料表”
6. 陳永忠,(2000)”不完全燃燒產物於噴泉式流體化床後燃燒區中消長效應之研究” 國立屏東科技大學環境工程與科學系碩士學位論文
7. 蔡政賢,(2001)”含硫氣體化合物於高週波電漿中之反應機制”,國立成功大學環境工程學系博士學位論文
8. 鄭仁雄、林傑,(1999a) “Effect of Fine Particles on Propane Combustion in a Spouted Bed Combustor”,第十四屆廢棄物處理技術研討會論文集,pp3.16-3.22
9. 鄭仁雄、林傑,(1999b)“Evaluation of Propane Combustion Data between the FlameMode & the non-Flame Mode in the Spouted Bed Region”,第十四屆廢棄物處理技術研討會論文集,pp3.23-3.29
10. 劉恕芬,(1998)“芳香族不完全燃燒產物於實驗室小型焚化系統之形成與破壞”,國立屏東科技大學環境工程與科學系碩士學位論文
11. 魏銘彥、許見利, (1995) “廢棄物燃燒特性分析”,第十屆廢棄物處理技術研討會論文集,pp294-297
12. Altwicker, E. R., & Konduri, R. K. N. V., (1992) “Hydrodynamic Aspects of Spouted Beds at Elevated Temperature”, Combust. Sci. Technol., Vol. 87, pp173-197
13. Altwicker, E. R., Kounduri, R. K. N. V., (1989) “The Destruction and Removal Efficiency of Toluene in Combustion and Related Processes”, Chemosphere, Vol. 19, pp1233-1241
14. Altwicker, E. R., & Lin, C., (1991) “Performance Characteristics of Refuse Derived Fuel (RDF) Incineration in a Spouted-Bed Combustor”, Poster#P-227, DIOXIN 91, Research Triangle Park, North Carolina, USA, 23-27 September
15. Arbib, H. A., & Levy, A., (1982) “Combustion of Low Heating Value Fuels and Wastes in the Spouted Bed”, Can. J. Chem. Eng., Vol. 60, pp528-531
16. Atkinson, R., Baulch, D. L., Cox, R. A., Hampson, Jr. R. F., Kerr, J. A., Rossi, M. J. and Troe, J., (1997) “Evaluated Kinetic and Photochemical Data for Atmospheric Chemistry”, J. Phys. Chem. Ref. Data, Vol. 26, pp. 1329-1499.
17. Barnard, J. A. and Ibberson, V. J., (1965) “The Gaseous Oxidation of Toluene II-The Analytical Results”, Combust. Flame, Vol.9, PP.149-157
18. Barnard, J. A., Bradley, J. N., (1985) Flame & Combustion, 2nd Ed., Chapman & Hall
19. Baulch, D. L., Cobos, C. J., Cox, R. A., Frank, P., Hayman, G., Just, T. H.,Kerr, J. A., Murrells, T., Pilling, M. J., Troe, J., Walker, R. W. and Warnatz, J.,(1994) “Summary Table of Evaluated Kinetic Data for Combustion Modeling: Supplement 1”, Combust. Flame, Vol. 98, pp. 59-79.
20. Benson, S. W., (1976) ”Thermochemical Kinetics”, 2nd ed., Wiley, New York, pp. 209~266.
21. Brady, B. B., & Martin, L. R., (1995) “Use of Surface CHEMKIN to Model Multiphase Atmospheric Chemistry : Application to Nitrogen Tetroxide Spills ” , Atmos. Environ., Vol. 29, pp715-726
22. Brezinsky, K., (1986) “The High-Temperature Oxidation of Aromatic Hydrocarbons”, Prog. Energy Combust. Sci., Vol. 12, pp1-24
23. Brezinsky, K., Pecullan, M., & Glassman, I., (1998)“Pyrolysis and Oxidation of Phenol”, J. Phys. Chem., Vol. 102, pp8614-8619
24. Bruno, C., (1991) “Gas-surface Interaction and Catalytic Effects”, Fluid Dynamical Aspects of Combustion Theory, pp225-328
25. Cukier, R. I., Levine, H. B., and Shuler, K. E., (1978) "Nonlinear Sensitivity Analysis for Multiparameter Model system", J. Comput. Phys., Vol. 26, pp. 1-42.
26. Dagaut, P., Cathonnet, M., Boettner, J., Gaillard, F., (1987)“Kinetic Modeling of Propane Oxidation”, Combust. Sci. and Technol., Vol. 56, pp23-63
27. Dean A. M., and Westmoreland, P. E., (1987) “Bimolecular QRRK analysis of methyl radical reaction”, Int. J. Chem. Kinet., Vol. 19, pp. 207-228
28. Dean, A. M., (1985) “Predictions of Pressure and Temperature Effects upon Radical Addition and Recombination Reactions”, J. Phys. Chem., Vol. 89, pp. 4600-4608
29. Dean, A. M., Bozzelli, J. W., and Ritter, E. P., (1991) “Chemact: A Computer Code to Estimate Rate Constants for Chemically-Activated Reactions”, Combust. Sci. Tech., Vol. 80, pp. 63-85
30. Dellinger, B., Graham, J. L., and Hall, D. L., (1986) “Laboratory Investigation of Thermal Degradation of a Mixture of Hazardous Organic Compound”, Environ. Sci. and Technol., Vol.20, PP.703-710
31. Dougherty, E. P., Hwang, J. T., and Rabitz, H., (1979) "Further Developments and Applications of the Green''s Function Method of Sensitivity Analysis in Chemical Kinetics", J. Chem. Phys., Vol. 71, pp.1794-1808.
32. Emdee, J. L., Brezinsky, K., & Glassman, I., (1992) “A Kinetic Model for the Oxidation of Toluene near 1200K”, J. Phys. Chem., Vol. 96, pp2151-2161
33. Freitas, L. A. P., Freire, J. T., (2001) “Heat Transfer in a Draft Tube Spouted Bed with Bottom Solid Feed”, Power Technol., Vol. 114, pp152-162
34. Frenklach, M., & Wang, H., (1991) “Detailed Surface and Gas-Phase Chemical Kinetics of Diamond Deposition”, Physical Review B, Vol. 43, pp1520-1545
35. Ghorishi, S., B., Altwicker E. R., (1994) “Heterogeneous Oxidation of Toluene in the Bed Region of a Spouted Bed Combustion;Effect of Bed Temperature and Bed Material”, Combust. Sci. & Technol., Vol.103, pp117-132
36. Ghorishi, S. B., Altwicker, E. R.,(1995) “Formation of Polychlorinated Dioxins, Furans, Benzenes, and Phenols in the Post-Combustion Region of a Heterogeneous Combustor- Effect of Bed Material and Post-Combustion”, Environ. Sci. & Technol., Vol. 29, pp1156-1162
37. Goldenberg, M., and Frenklach, M., (1995) “A Post-Processing Method for Feature Sensitivity Coefficients”, Int. J. Chem. Kinet., Vol. 27, pp. 1135-1142
38. Graham, J. L., Hall, D. L., & Dellinger, B., (1986) “ Laboratory Investigation of Thermal Degradation of a Mixture of Hazardous Organic Compound ” , Environ. Sci. Technol., Vol. 20, pp703-710
39. Gustavsson, L., Glarborg, P., & Leckner, B., (1996) “Modeling of Chemical Reactions in Afterburning for the Reducing of N2O”,Combust. Flame, Vol. 106, pp345-358
40. Hook, B. D., (1990) “Experimental and Modeling Studies of a non-Isothermal Spouted Bed Chemical Reactor”, Ph.D. Thesis, Rensselaer Polytechnic Institute, Troy, N.Y.
41. Jeng, R. S., Altwicker, E. R., Morgan III, M. M., & Wilk, R. D.,“Propane Combustion in a Spouted Bed Combustor(II):A Modeling Study in the Bed Region”,Unpubilshed., Department of Chemical Engineering Rensselaer Polyteshnic Institute, Troy, NY 12180, USA
42. Jones, J. H., Fenske, M., Hution, D. G., and Allendorf, H.D., (1961) J.Chem. Engng Data, Vol.6, PP.623
43. Kee, R. J., Rupley, F. M., and Miller, J. A., (1993) “Chemkin-II: A Fortran Chemical Kinetics Package for the Analysis of Gas Phase Chemical Kinetics”, SANDIA REPORT, SAND89-8009B UC-706, reprinted. pp. 9~127
44. Ko, T., Adusei, G. Y., Funtiju, A., (1991) “Kinetics of the O(3P) +C6H6 Reaction over a Wide Temperature Range”, J. Phys.Chem., Vol. 95, pp8745-8748
45. Law, V. J., and Sharma, Y., (1997) ”Computation of the Gradient and Sensitivity Coefficients in Sum of Squares Minimization Problems with Differential Equation Models”, Computers Chemical Engineering, Vol. 21, pp.1471-1479.
46. Lee, C. C., Huffman, G. L. and Mao, Y. L., (1996) “A Comparison of Regulated Chemicals Versus Emitted PICs and PICs for Risk Analysis”, J. Hazard. Mater., Vol. 50, pp199-225
47. Levendis, Y. A., Atal, A., Carlson, J., Dunayevskiy, Y., Vouros,P., (1996) “Comparative Study on the Combustion and Emissions of Waste Tire Crumb and Pulverized Coal”, Environ. Sci. and Technol., Vol.30, No.9, PP.2742-2754
48. Lin, C., Ghorishi, S. B., Altwicker, E. R., (1994) “The Effect of Fuel Composition and Post Combustion Region Parameters on PICs Formation in a Laboratory Scale Incinerator”, III Int. Cong. On Toxic Combust. By-Product, MIT Cambridge, Mass, USA., pp14-16
49. Lindstedt, R. P., Maurice, L. Q., (1996) “Detail Kinetic Modeling of Toluene Combustion”, Combust. Sci. and Technol., Vol. 120, pp119-167
50. Lutz, A. E., Kee, R. T., and Miller, J. A., (1992) “SENKIN: A Fortran Program for Predicting Homogeneous Gas Phase Chemical Kinetics with Sensitivity Analysis”, SANDIA REPORT, SANDIA87-8248, pp. 1-32
51. Mathur, K. B., Epstein, N., (1974) “Spouted Beds”, Academic Press,New York, USA
52. Morata, T., Fiorini, A. C., Fischer, F. M., Colacioppo, S., Wallingford, K. M., (1997) "Toluene-induced hearing loss among rotogravure printing workers", Scandinavian journal of work, environment & health, vol. 23, no. 4, , pp. 289-298, 44 ref. ; ISSN 0355-3140
53. Peck, R. E., Glarborg, P., Johnsson, J. E., (1991) “Kinetic Modeling of Fuel-Nitrogen Conversion in One-Dimensional, Pulverized-Coal Flames”, Combust. Sci. and Technol., Vol. 76,pp81-109
54. Rabitz, H., Kramer, M. A., and Dacol, D., (1983) "Sensitivity Analysis in Chem. Kinetics", Annual Review of Physical Chemistry, Vol. 34, pp. 419-463
55. Ritter, E. R., and Bozzelli, J. W.,(1987) THERM: Thermodynamic Property Estimation for Radicals and Molecules, User’s Manual, New Jersey Institute of Technology, Newark, NJ. 07102
56. Santoro, R. J., Glassman, I., (1979) “A Review of Oxidation of Aromatic Compounds”, Combust. Sci. and Technol., Vol. 19, pp161
57. Sarofim, F. A., Sacchi, F. G., Procaccini, C., & Longwell, P. J., (1996) “Experimental and Numerical Studies of PIC Formation During Chlorocarbon Combustion: Development of a Failure Mode Diagnostic System for Hazardous Waste Incinerators”, Hazard. Waste Hazard. Mater., Vol. 13, pp39-49
58. Savage, P. E., (2000) ”Mechanisms and Kinetics Models for Hydrocarbon Pyrolysis”, J. Anal. Appl. Pyrolysis 54, 109-126
59. Senkan, S. M., (1987) "Converting Methane by Chlorine-Catalyzed Oxidative Pyrolysis", Chemical Engineering Science, Vol. 83, pp. 58-61
60. Staley, L. J., Richards, M. K., Huffman, G. L. & Olexsey, R. A., (1987) “On the Relationship between CO, POHC, & PIC Emissions from a Simulated Hazardous Waste Incinerator”, JAPCA, Vol. 39, pp321-327
61. Tilden, J. W., Costanza, V., McRae, G. J., and Seinfeld, J., (1981) "Sensitivity Analysis of Chemically Reacting Systems", Modeling of Chemical Reaction Systems, Springer-Verlag, New York, pp. 69-91
62. Vandell, R. D., Smith, J. D., Mahle, N. H., (1994) “A Global Kinetic Model for the Formation & Destruction of the Products of Incomplete Combustion Produced from the Combustion of o-Dichlorobenzene“, Combust. Sci. & Technol., Vol. 100, pp225-243
63. Wongvicha, P., & Bhattacharya, S. C., (1994) “ Continuous Lignite Char Combustion in a Spouted Bed”, Int. J. Energy Res., Vol.18, pp21-47
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 18.劉義周,1998.4,〈政府體制五十年--我國中央政府體制的發展:本會慶祝行憲五十周年法學研討會論文〉,《中華法學》,第8期,頁145-158。
2. 1.曲兆祥,1998.6,〈民國八十六年修憲後總統、行政院與立法院權力運作關係及其問題之分析〉,《行政管理學報》,第1期,頁1-20。
3. 2.呂亞力,1996.7,〈內閣制之優劣與我國憲政向該制規劃之商榷〉,《政策月刊》,第18期,頁2-3。
4. 3.呂炳寬,1995.11,〈我國中央政府之類型:修憲前後之比較〉,《空大行政學報》,第4期,頁281-305。
5. 4.李念祖,1983.1,〈臨時條款與總統之法令公佈權〉,《憲政時代》,第8卷,第3期。
6. 5.李念祖,1981.1,〈動員戡亂時期臨時條款在我國憲政上之功能及影響〉,《中華學報》,第8卷,第1期。
7. 6.李素貞,1995.9,〈當前我國憲政體制組成聯合內閣之探討--兼論總統、行政與立法之關係〉,《立法院院聞》,第23卷,第9期,頁51-62。
8. 7.邵宗海,1998.1,〈『總統之選舉方式』憲法增修條文的產生背景與經過〉,《憲政時代》,第23卷,第3期,頁50-64。
9. 8.周育仁、劉華宗,1996.9,〈立法院在憲政體制中的角色〉,《理論與政策》,民國八十五年秋季號。
10. 10.周育仁,1996.8(a),〈總統直選對我國憲政體制之影響〉,《問題與研究》,第35卷,第8期,頁62-74。
11. 11.周育仁,1996.7(b),〈我國憲政體制之實際運作與未來走向〉,《政策月刊》,第18期,頁8-9、17。
12. 12.周陽山,1996.8,〈總統制、議會制、半總統制與政治穩定〉,《問題與研究》,第35卷,第8期,頁50-61。
13. 14.林水波,1999.9(b),〈第一次不信任案的政治分析〉,《立法院院聞》,第27卷,第9期,頁47-71。
14. 16.林子儀,1994.7,〈美國總統制與憲政改革〉,《中國比較法學會學報》,第15期,頁674-688。
15. 17.吳重禮,2000.3,〈「美國「分立性政府」研究文獻之評析:兼論台灣地區政治發展」,《問題與研究》,第39卷,第3期,頁75-101。