跳到主要內容

臺灣博碩士論文加值系統

(3.236.225.157) 您好!臺灣時間:2022/08/16 01:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許文明
研究生(外文):HSU, WEN- MING
論文名稱:以現地及小型人工溼地探討數種水生植物淨化養豬廢水之效能比較
論文名稱(外文):Efficiency Evaluation of Several Hydrophytes to Purify Swine Wastewater Using Field- and Small-Scale Constructed Wetland
指導教授:黃益助
指導教授(外文):HUANG, YI-CHU
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:環境工程與科學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:144
中文關鍵詞:水力負荷
外文關鍵詞:hydraulic retention time
相關次數:
  • 被引用被引用:14
  • 點閱點閱:438
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
摘 要
論文摘要內容:
本研究的目的主要是探討數種水生植物在養豬廢水高污染負荷下,瞭解各水生植物(布袋蓮、水芙蓉、浮萍)對畜牧廢水的處理成效。本研究利用小型及現地大型人工溼地系統淨化養豬廢水,在不同的水力停留時間(hydraulic retention time HRT = 2、4、6天)下,針對懸浮固體物(suspended solid ,SS)、化學需氧量(chemical oxygen demand,COD)、生化需氧量(biochemical oxygen demand ,BOD)、氨氮(NH3-
-N)、硝酸鹽氮(NO3-N)、亞硝酸鹽氮(NO2-N)、總凱氏氮(TKN)、總磷(T-P)、溶解性化學需氧量(SCOD)等水質指標,探討各水生植物對各水質指標之去除率,另在對照組內置礫石,了解礫石對目標污染物去除率之影響,作為日後淨化養豬廢水設計之參考。一般而言各水質指標之去除率會隨HRT增長而提高,但HRT增長到某種程度時去除率將趨於一定值。首先以二組實驗室規模大小的人工濕地處理設施,其中一組未放置礫石,平均去除率以布袋蓮最佳,各水質指標去除率為COD:41.3%、BOD:39.2%、NH3-N:74.6%、NO3-N:52.5%、NO2-N:58.1%、SCOD:35%,SS、T-P之平均去除率以水芙蓉之SS:32%、T-P:39.1%最高,另有放置礫石之平均去除率以布袋蓮之COD:53%、BOD:55.1%、NH3-N:76.6%、SCOD:39.1%最高,SS、T-P、NO2-N之平均去除率以浮萍之SS:39.1%、T-P:44.9%、NO2-N:90.9%最高,NO3-N平均去除率以水芙蓉的59.3%最高。在有放置礫石的實驗過程中發現礫石對有機物及其他污染物有較佳的去除率,另在現地大型人工溼地以相同的水生植物和操作參數處理養豬廢水,發現大型現地人工濕地水生植物串聯(依序為布袋蓮、水芙蓉、浮萍)對水質指標污染物去除率為NO2-N:76.4%、SS:42.6%、T-P:43%、NH3-N:35%、COD:23.1%、BOD:23.7%,其中對NO2-N:76.4%、SS:42.6%、T-P:43%、NH3-N:35%具有相當大的去除效率。
ABSTRACT
The overall objective of this research is to investigate the removal efficiency of several hydrophytes to purify the swine wastewater. The selected hydrophytes included the water hyacinth, water lotus, and Leman minor. Small scale and field system were adopted to study the removal efficiency of several hydrophytes in terms of water quality index, such as suspended solid (SS), chemical oxygen demand (COD), biochemical oxygen demand (BOD), ammonia nitrogen (NH3-N), nitrate (NO3-N), nitrite (NO2-N), soluble COD (SCOD), total phosphorous (T-P), etc. Gravels were placed into the bottom of each basin to understand their effects on the removal of target pollutants. The removal efficiency increased with the increase of hydraulic retention time (HRT), but it reached a plateau as the HRT increased to a certain extent. For the small scale experiments, the results showed that the water hyacinth had the best average removal efficiency without gravels. The removal efficiencies for several water quality indices were 41.3% (COD), 39.2% (BOD), 74.6% (NH3-N), 52.5% (NO3-N), 58.1% (NO2-N), and 35.0% (SCOD). The water lotus showed the highest average removal efficiency for SS (32%) and T-P (39.2%). With gravels, the water hyacinth also showed the highest average removal efficiency for COD (53%), BOD (55.1%), NH3-N (76.6%) and SCOD (39.1%) with gravels. Leman minor had the highest average removal efficiency for SS (39.1%), NO2-N (90.9%), and T-P (44.9%). Water lotus showed the highest average removal efficiency for NO3-N (59.3%). Gravels had the potential to increase the removal efficiency of hydrophytes for target pollutants. The similar results were obtained by using the field-scale constructed wetland and showed promising results for removal of NH3-N, NO3-N, and NO2-N.
目 錄
頁次
中文摘要------------------------------------------I
英文摘要 -----------------------------------IV
誌 謝-----------------------------------------VI
目 錄----------------------------------------VII
表 目 錄 ---------------------------------------XI
圖 目 錄 --------------------------------------XII
第一章 前 言-------------------------------------1
1.1研究動機---------------------------------------1
1.2研究目的---------------------------------------2
第二章 文獻回顧 ----------------------------------4
2.1 自然處理系統 ---------------------------------4
2.2 植物特性 -------------------------------------8
2.2.1布袋蓮 ----------------------------------8
2.2.2浮萍 ------------------------------------9
2.2.3水芙蓉 ---------------------------------10
2.2.4水生植物的選擇 -------------------------11
2.3 溼地的定義、形式、分類、特性與功能 -------------13
2.3.1 溼地定義 ------------------------------13
2.3.2 溼地的效能 ----------------------------15
2.3.3 溼地的特點與功用 ----------------------16
2.3.4 人工溼地的形式與分類 ------------------18
2.3.5 溼地的特性與功能 ----------------------25
2.4 氧的傳輸機制 --------------------------------29
2.5 溼地介質的選擇 ------------------------------33
2.6 氮的去除 ------------------------------------34
2.7 磷的去除 ------------------------------------38
2.8 pH值的變化 ----------------------------------39
2.9 有機物與懸浮固體的去除 ----------------------40
2.10 溼地中植物之氧傳輸 -------------------------41
2.11 一階動力模式 -------------------------------43
第三章 實驗材料與方法 ---------------------------45
3.1 實驗場址及相關設施 --------------------------45
3.1.1 實驗室規模小型人工溼地-----------------45
3.1.2 現地大型人工溼地-----------------------51
3.2 實驗器材 ------------------------------------54
3.3 水質現場分析項目 ----------------------------55
3.4 實驗室檢驗分析項目及保存方法 ----------------56
3.4.1 分析及保存方法 ------------------------56
3.4.2 水質分析方法 --------------------------58
第四章 結果與討論 -------------------------------64
4.1 實驗室規模小型人工溼地 --------------------64
4.2 小型人工溼地水生植物串聯處理之效率--------106
4.3 現地大型人工溼地水生植物串聯處理之效率----110
第五章 結論與未來研究方向-----------------------113
5.1 結論 -------------------------------------113
5.2本研究成果之貢獻---------------------------114
5.3 未來研究方向之建議-------------------------115
第六章 參考文獻 --------------------------------117
附 錄----------------------------------------126
作者簡介----------------------------------------144
表 目 錄
頁次
表2.1 人工溼地廢水處理之常用之植物種類 --------------12
表2.2 溼地定義 --------------------------------------------------14
表2.3Ramser所列出不同溼地種類 ----------------------------23
表2.4溼地的主要價值功能 -------------------------------------27
表3.1水質分析方法與保存方式 --------------------57
圖 目 錄
頁次
圖2.1 土壤處理系統漫流示意圖-------------------------------5
圖2.2 土壤處理系統快速滲透流示意圖----------------------6
圖2.3 自然溼地處理系統示意圖-------------------------------8
圖2.4 自由水層系統示意圖-----------------------20
圖2.5 表層下水流系統示意圖---------------------20
圖2.6 植物根區之氧化還原作用示意圖---------------------29
圖2.7 氧在植物中之擴散作用機制---------------------------30
圖2.8 氧在植物中對流現象之貫流方式之一---------------31
圖2.9 氧在植物中對流現象之貫流方式之二-----------------32
圖2.10氧在植物中對流現象之非貫流方式-------------------33
圖2.11溼地中有機物循環示意圖 -------------------41
圖3.1 污水處理場平面配置圖 ----------------------47
圖3.2實驗室規模人工溼地平面圖-------------------48
圖3.3 實驗室規模人工溼地剖面圖 ------------------49
圖3.4 實驗室規模人工溼地槽體側視圖 --------------50
圖3.5 現地人工溼地配置平面圖 --------------------52
圖3.6a 現地人工溼地縱剖面圖 ---------------------53圖3.6b 現地人工溼地縱剖面圖 ---------------------53
圖4.1單一水生植物對各水質指標之去除率(水力停留
時間為二天,無礫石) ------------------------65
圖4.2 單一水生植物對各水質指標之去除率(水力停留
時間為二天,內置礫石) ---------------------65
圖4.3 浮萍有在有無礫石條件下對水質指標之去除率
(水力停留時間2天)------------------------66
圖4.4 布袋蓮在有無礫石條件下對水質指標之去除率
(水力停留時間2天)------------------------67
圖4.5 水芙蓉在有無礫石條件下對水質指標之去除率
(水力停留時間2天)------------------------68
圖4.6單一水生植物對水質指標BOD之去除率(水力停
留時間為2天,無礫石) ----------------------69
圖4.7 單一水生植物對水質指標COD之去除率(水力停留
時間為2天,無礫石) -----------------------69
圖4.8 單一水生植物對水質指標SS之去除率(水力停留時間為2天,無礫石) ---------------------------69
圖4.9 單一水生植物對水質指標NH3-N之去除率(水力停留時間為2天,無礫石)----------------------- 70
圖4.10 單一水生植物對水質指標T-P之去除率(水力停留時間為2天,無礫石) ----------------------70
圖4.11單一水生植物對水質指標NO3-N之去除率(水力停留時間為2天,無礫石) -----------------------70
圖4.12單一水生植物對水質指標NO2-N之去除率(水力停留時間為2天,無礫石) ----------------------71
圖4.13單一水生植物對水質指標TKN之去除率(水力停留時間為2天,無礫石) -----------------------71
圖4.14單一水生植物對水質指標SCOD之去除率(水力停留時間為2天,無礫石) -----------------------71
圖4.15單一水生植物對水質指標BOD之去除率(水力停留
時間為2天,內置礫石)---------------------72
圖4.16單一水生植物對水質指標COD之去除率(水力停留時間為2天,內置礫石) ----------------------72
圖4.17單一水生植物對水質指標SS之去除率(水力停留時間為2天,內置礫石) ---------------------72
圖4.18單一水生植物對水質指標T-P之去除率(水力停留時間為2天,內置礫石) -----------------------73
圖4.19單一水生植物對水質指標NH3-N之去除率(水力停留時間為2天,內置礫石) ---------------------73
圖4.20單一水生植物對水質指標NO3-N之去除率(水力停留時間為2天,內置礫石) ---------------------73
圖4.21單一水生植物對水質指標NO2-N之去除率(水力停留時間為2 天,內置礫石) --------------------74
圖4.22 單一水生植物對水質指標TKN之去除率(水力停留時間為2天,內置礫石) ---------------------74
圖4.23 單一水生植物對水質指標SCOD之去除率(水力停留
時間為2天,內置礫石) -------------------74
圖4.24單一水生植物對各水質指標之去除率(水力停留時間為四天,無礫石) ------------------------75
圖4.25 單一水生植物對各水質指標之去除率(水力停留時間為四天,內置礫石) ----------------------76
圖4.26 布袋蓮在有無礫石水力停留時間4天對水質指標
之去除率---------------------------------77
圖4.27 水芙蓉在有無礫石水力停留時間4天對水質指標
之去除率---------------------------------78
圖4.28 浮萍在有無礫石水力停留時間4天對水質指標之
去除率-----------------------------------79
圖4.29 單一水生植物對水質指標BOD之去除率(水力停
留時間為四天,無礫石)--------------------80
圖4.30 單一水生植物對水質指標COD之去除率(水力停留時間為四天,無礫石)-----------------------80
圖4.31 單一水生植物對水質指標SS之去除率(水力停留時
間為四天,無礫石) ------------------------80
圖4.32單一水生植物對水質指標T-P之去除率(水力停留時間為四 天,無礫石) -----------------------81
圖4.33單一水生植物對水質指標NH3-N之去除率(水力停留時間為四天,無礫石) ----------------------81
圖4.34單一水生植物對水質指標NO3-N之去除率(水力停留時間為四天,無礫石) ----------------------81
圖4.35單一水生植物對水質指標NO2-N之去除率(水力停留時間為四天,無礫石) ----------------------82
圖4.36單一水生植物對水質指標TKN之去除率(水力停留時間為四天,無礫石) ------------------------82
圖4.37單一水生植物對水質指標SCOD之去除率(水力停留時間為四天,無礫石) ----------------------82
圖4.38單一水生植物對水質指標BOD之去除率(水力停留時間為四天,內置礫石) ----------------------83
圖4.39單一水生植物對水質指標COD之去除率(水力停留時間為四天,內置礫石) ----------------------83
圖4.40單一水生植物對水質指標SS之去除率(水力停留時間為四天,內置礫石) ---------------------83
圖4.41單一水生植物對水質指標T-P之去除率(水力停留時間為四天,內置礫石) -----------------------84
圖4.42單一水生植物對水質指標NH3-N之去除率(水力停留時間為四天,內置礫石) ----------------------84
圖4.43單一水生植物對水質指標NO3-N之去除率(水力停留時間為四天,內置礫石) --------------------84
圖4.44單一水生植物對水質指標NO2-N之去除率(水力停留時間為四天,內置礫石) --------------------85
圖4.45單一水生植物對水質指標TKN之去除率(水力停留時間為四天,內置礫石) ----------------------85
圖4.46單一水生植物對水質指標SCOD之去除率(水力停留時間為四天,內置礫石) -------------------85
圖4.47單一水生植物對各水質指標之去除率(水力停留時間為六天,無礫石) -----------------------86
圖4.48單一水生植物對各水質指標之去除率(水力停留
時間為六天,內置礫石) --------------------87
圖4.49 布袋蓮在有無礫石水力停留時間6天對水質指標
之去除率---------------------------------88
圖4.50 水芙蓉在有無礫石水力停留時間6天對水質指標
之去除率---------------------------------89
圖4.51 浮萍在有無礫石水力停留時間6天對水質指標之
去除率-----------------------------------90
圖4.52單一水生植物對水質指BOD標之去除率(水力停留
時間為六天,無礫石) ----------------------91
圖4.53單一水生植物對水質指COD標之去除率(水力停留
時間為六天,無礫石) ----------------------91
圖4.54 單一水生植物對水質指SS標之去除率(水力停留
時間為六天,無礫石) ----------------------91
圖4.55 單一水生植物對水質指T-P標之去除率(水力停留時間為六天,無礫石) ---------------------92
圖4.56單一水生植物對水質指NH3-N標之去除率(水力停
留時間為六天,無礫石) --------------------92
圖4.57 單一水生植物對水質指NO3-N標之去除率(水力停留時間為六天,無礫石) --------------------92
圖4.58 單一水生植物對水質指NO2-N標之去除率(水力
停留時間為六天,無礫石)-------------------93
圖4.59 單一水生植物對水質指TKN標之去除率(水力停
留時間為六天,無礫石) --------------------93
圖4.60 單一水生植物對水質指SCOD標之去除率(水力停
留時間為六天,無礫石) -------------------93
圖4.61單一水生植物對水質指標BOD之去除率(水力停留
時間為六天,內置礫石)---------------------94
圖4.62單一水生植物對水質指標COD之去除率(水力停留
時間為六天,內置礫石) --------------------94
圖4.63單一水生植物對水質指標SS之去除率(水力停留
時間為六天,內置礫石) --------------------94
圖4.64單一水生植物對水質指T-P標之去除率(水力停留
時間為六天,內置礫石) -------------------95
圖4.65單一水生植物對水質指標NH3-N之去除率(水力停
留時間為六天,內置礫石) -----------------95
圖4.66單一水生植物對水質指標NO3-N之去除率(水力停
留時間為六天,內置礫石) ------------------95
圖4.67單一水生植物對水質指標NO2-N之去除率(水力停
留時間為六天,內置礫石) ------------------96
圖4.68單一水生植物對水質指標TKN之去除率(水力停留
時間為六天,內置礫石) --------------------96
圖4.69 單一水生植物對水質指標SCOD之去除率(水力停留時間為六天,內置礫) ---------------------96
圖4.70布袋蓮在不同水力停留時間對水質指標之去除率(放置礫石)-------------------------------98
圖4.71布袋蓮在不同水力停留時間對水質指標之去除
率(未放置礫石)----------------------------99
圖4.72水芙蓉在不同水力停留時間對水質指標之去除
率(放置礫石) ----------------------------101
圖4.73水芙蓉在不同水力停留時間對水質指標之去除
率(未放置礫石)---------------------------102
圖4.74浮萍在不同水力停留時間對水質指標之去除率
(放置礫石)-------------------------------104
圖4.75 浮萍在不同水力停留時間對水質指標之去除率
(未放置礫石)-----------------------------105
圖4.76不同水力停留時間小型人工溼地水生植物串聯處
理(依序為布袋連、水芙蓉、浮萍)對各水質指標
之去除率(內置礫石) ----------------------108
圖4.77不同水力停留時間小型人工溼地水生植物串聯處
理(依序為布袋連、水芙蓉、浮萍)對各水質指標
之去除率(內置礫石)-----------------------109
圖4.78不同水力停留時間現地大型人工溼地水生植物對
各水質指標之去除率----------------------111
第六章 參考文獻
于立平,1997,"溼地公園規劃策略之研究-以高雄縣鳥松溼
地公園為例",國立中山大學海洋環境研究所,碩士論文,台灣高雄。
李志源,1996,"利用人工溼地三級處理生活污水",國立台灣海洋大學河海工程系。
李駿智,1996,"人工溼地承受高強度廢水之操作表現",國立屏東技術學院環境工程與科學研究所,碩士論文,台灣屏東。
於幼華,1996,"初探水資源與溼地保育課題間之相關性",第
三屆台灣海岸溼地保育研討會論文集,中華民國野鳥學會,p.37-42。
吳曉磊,1995,"人工溼地廢水處理機理",環境科學,16卷(3
期),p. 82-88。
林春吉,2000,"台灣水生植物(2)溼地生態導覽",田野影
像出版社,p.91-108。
吳建民,1994,"全球可再生水及水資源再利用",第一屆水再生及再利用研討會論文集,國立中央大學。
高肇藩、張祖恩,1991,"水污染防治",p.2-8,中國土木水利
工程學會。
徐玉標,1986,"台灣布袋蓮之分佈及其與水質相關之調查研
究",中國農業工程學報,30卷(2期),p.28-39。
溫清光、楊磊,1998,"綠色環保技術之研發及策略研究-溼地對水資源之保育管理及永續利用- 子計畫五:污染物在溼地系統中之宿命",行政院國家科學委員會專題研究計畫年度成果報告。
溫清光、王姿文、李得元,1998,"綠色環保技術之研發及策略研究-溼地對水資源之保育管理及永續利用- 子計畫三:水產養殖廢水之人工溼地處理及循環再利用之研究(I)",行政院國家科學委員會專題研究計畫年度成果報告。
溫清光、林瑩峰、荊樹人,1998,"人工溼地應用於海岸及離島型工業區廢水循環處理之研究",行政院國家科學委員會專題研究計畫成果報告。
Adler, P.R., Summerfelt, S.T, Glenn, D.M., and Takeda, F.(1996),
"Evaluation of a wetland system designed to meet strigent
phosphorus discharge requirements," Vol.68, No.5, p834-
842.
Bavor, H.J., Roser, D.J. and Adcock, P.W. (1995), "Challenges
for the development of advanced wetlands technology," Water. Sci. Tech. Vol. 32, No. 3, p.12-21.
Bhamidimarri, R., Shilton, A., Armstrong, I., Jacobson, P., Scarle
, D.(1991), "Constructed wetlands for wastewater reatment
:The new zealand experience," Water Sci. Tech., Vol. 24,
p.247-253.
Bovendeur, J., Eding, E.H. and Henken, A.M. (1987), "Design
and performance of a water recirculation system for high density culture of the African catfish," Aquaculture, Vol. 63, p.330-351.
Bovendeur, J., Zwaga,A.B., Lobee, B.G. J. and Blom,J.H. (1990) , "Fixed-film reactors in aquacultural water recycle systems: effect of organic matter elimination on nitrification kinetics, " Water. Res., Vol. 24, No. 2, p.205-215.
Brix, H. (1987), "Treatment of wastewater in the rhizosphere of
wetland plants-the root-zone method," Water Sci. Tech., Vol. 19, p.106-117.
Brix, H.(1993), "Macrophyte-mediated oxygen transfer in wetland -s:Transport mechanisms and rates," Constructed Wetlands for Water Qulity Improvement, p.391-398.
Bulc, T., Vrhovsek, D. and Kukanja, V. (1997), "The use of constructed wetland for landfill leachate treatment," Water. Sci. Tech., Vol. 35, No. 5, p.300-304.
Burgoon P.S., Reddy K.R., Debusk T.A. (1995), " Performance
of subsurface flow wetlands with batch-load and continuous-flow conditions," Water. Environ. Res., Vol. 67, No. 5, p.854-866.
Busk, T.A., Burgoon, P.S., and Reddy, K.R. (1991), "Secondary
treatment of domestic wastewater using floating and Emergent Macrophytes," Constructed Wetlands for Waste-
water Treatment, edited by D. A. Hammer, Lewis Publish-
ers, Inc., Chelsea, M.I., p.523-531.
Castelle , A.J., Johnson, A.W., Conolly, C (1994), "Wetland and stream buffer size reuirements-areview," J. Environ. Qual. Vol. 23, p.871-882.
Colin P.D. and Groffman P. M. (1994), "Comparing microbial
parameters in natural and construction wetlands," J. Environ. Qual., Vol. 23, p.296-308.
Comin, F.A., Romero, J.A., Astorga, V., and Garcia, C. (1997),"
Nitrogen removal and cycling in restored wetlands used as filters of nutrients for agricultural runoff, "Water. Sci. Tech., Vol. 35, No. 5, p.252-265.
Conley, L.M., Dick, R.I. , Lion, L.W. (1991), "An assessment of
the root zone method of wastewater treatment," J. WPCF., Vol. 63, p.237-245.
Cornwell, D.A., Zoltek, J., Patrinely, C.D., Furman, T.D., Kim, J.
I. (1977), "Nutrient removal by water hyacinths," J. WPCF.,
Vol.49, p.54-67.
D.Angelo E.M. and Reddy K.P. (1994), " Diagenesis of organic
matter in a wetland receiving hypereutrophic lake water:
. Distribution of dissolved nutrients in the soil and water
column," J. Environ. Qual., Vol. 23, p.927-937.
Davies T.H. and Cottingham P.D. (1993)," Phosphorus removal
from wastewater in a constructed wetland ," Constructed
Wetlands for Water Quality Improvement, p.313-321.
Decamp, O. and Warren, A. (1998), "Bacterivory in ciliates
isolated from constructed wetlands (reed beds) used for wastewater treatment," Water. Res., Vol. 32, No. 7, p.1988-
1997.
Eger, P. and Lapakko, K. (1991), "Use of Wetlands to Remove Nickel and Copper from Mine Drainage," Constructed Wetlands for Wastewater Treatment, edited by D.A. Hammer, Lewis Publishers, Inc., Chelsea, M.I., p.781-788.
Faulkner S. P. and Richardson C. J. (1989), "Physical and chem-
ical characteristics of freshwater wetland soils. Constructed
Wetlands for Wastewater Treatment-Municipal," Industrical and Agricultural, p.42-74.
Gale, P.M., Reddy, K.R., Graetz, D. A. (1993), "Nitrogen removal from reclaimed water applied to constructed and natural wetland microcosms," Water Environ. Research, Vol. 65. No. 2, p.161-167.
Gersberg, R.M., Elkins, B.V., Goldman, C.R.(1984), "Use of
artificial wetlands to remove nitrogen form wastewater," J. WPCF., Vol. 56, p.153-157.
Gersberg, R.M., Elkins, B.V., Lyon, S.R., Goldman, C.R.(1986), "Role of aquatic plants in wastewater treatment by artificial wetlands," Water Research, Vol. 20. No. 3, p.362-369.
Henrot, J., Wieder, R.K., Heston, K.P., and Nardi, M.P. (1991),
"Wetland treatment of coal mine drainage: Controlled studes of iron retention in model wetland systems," Constructed Wetlands for Wastewater Treatment, edited by D. A. Hammer, Lewis Publishers, Inc., Chelsea, M.I., p.792-799.
Hiley, P.D. (1995), "The reality of sewage treatment using wetlands," Wat. Sci. Tech. Vol. 32, No.3, p.338-349.
Kadlec, R.H. (1995), "Overview: surface frow constructed Wetla-
nds," Water. Sci. Tech.,Vol. 32, No.3, p.1-15.
Kadlec,R.H. (1996), "Suspended solid,"Treatment Wetlands,
p.314-321.
Kruzic, A.P. (1994), "Natural treatment systems," Water Environ. Research, Vol. 66. No. 4, p.356-362.
Laber, J., Perfler, R. and Haberl, R. (1997), "Two strategies for advanced nitrogen elimination in vertical flow constructed wetlands," Water. Sci. Tech., Vol. 35, No. 5, p.70-78.
Lakatos, G., Kiss, M.K., Kiss, M. and Juhasz P. (1997),
"Application of constructed werlands for wastewater treatment in Hungary," Water. Sci. Tech., Vol.35, No. 5, p.330-335.
Machate, T., Noll, H., Behrens, H., and Kettrup, A. (1997),
"Degra-dation of Phenanthrene and Hydraulic characteristics in A Constructed Wetland," Water Research, Vol. 31, No. 3, p.551-561.
Mander,U.and Mauring,T.(1997), "Constructed wetlands for waste-
water treatment in Estonia," Water. Sci. Tech., Vol. 35, No. 5, p.322-331.
Martin, C.D. and Johnson, K.D. (1995), "The Use of Extended Aeration and In-series Surface-flow Wetlands for Landfill Leachate Treatment," Water. Sci. Tech.,Vol. 32, No. 3, p.117-127.
Mehlum, T. (1995), "Treatment of Landfill Leachate in On-site Lagoons and constructed Wetlands," Water. Sci. Tech., Vol. 32, No. 3, p.128-135.
Mehlum, T. (1995), "Treatment of landfill leachate in on-site laqo-
on and constructed wetland," Water. Sci. Tech.,Vol. 32, No. 3, p.130-136.
Meiorin, E.C.(1991), "Urban Runoff Treatment in A Fresh/
Brackish Water Marsh in Fremont, California," Constructed Wetlands for Wastewater Treatment, edited by D. A.
Hammer, Lewis Publishers, Inc., Chelsea, M.I., p.676-684.
Nichols, D.S.(1983), "Capacity of natural wetlands to remove
nutrients from wastewater," J. WPCF., Vol. 55, p.494-506.
Patrick,W. H.,Jr.,(1994), "From wastelands to wetlands," Water.
Sci. Tech., Vol. 23, p.891-898.
Reddy, K.R. and D. Angelo. E.M. (1997), "Biogeochemical indic-
ators to evaluate pollutant removal in constructed wetland," Water. Sci. Tech. Vol. 35, No. 5, p.1-12.
Schwartz, M.F. and Boyd, C.E. (1995), "Constructed wetlands for treatment of channel catfish pond effluents," The progressi-
ve Fish-Culturist, Vol. 57, No. 4, p.254-268.
Thomas, P.R., Glover, P., and Kalaroopan, T. (1995), "An evaluati-
on of pollutant removal from secondary treated sewage effluent using a constructed wetland system," Water. Sci. Tech. Vol. 32, No. 3, p.88-97.
Thut, R.N. (1991), "Utilization of Artificial Marshes for Treatment
of Pulp Mill Effluents," Constructed Wetlands for Wastew-
ater Treatment, edited by D. A. Hammer, Lewis publishers, Inc., Chelsea, M.I., p.237-242.
Vrhovsek, D., Kukanja, V., and Bulc, T.(1996), "Constructed Wetl-
and (CW) for Industrial Waste Water Treatment," Water Research, Vol. 30, No. 10, p.2286-2293.
Wood, A. (1995), "Constructed wetlands in water pollution control:
fundamentals to their understanding," Water. Sci. Tech. Vol.
32, No. 3, p.22-28.
Worrall, P., Peberdy, K.J., and Millett, M.C. (1997), "Constructed
wetlands and nature conservation," Water. Sci. Tech.,Vol.
35, No.5,p.202-215.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top