跳到主要內容

臺灣博碩士論文加值系統

(3.229.117.123) 您好!臺灣時間:2022/08/12 16:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:朱訓智
研究生(外文):Hsun-Chih Chu
論文名稱:鋅、鉻在分層土壤中傳輸與吸持機制之探討
論文名稱(外文):The Transport and Retention Mechanisms of Zinc and Chromium in Stratified Soils
指導教授:李芳胤李芳胤引用關係
指導教授(外文):Fang-Yin Lee
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:環境工程與科學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:92
中文關鍵詞:傳輸吸持聯結態分層土壤
外文關鍵詞:ZnCrTransportRetentionStratified soilsSequential extraction
相關次數:
  • 被引用被引用:31
  • 點閱點閱:864
  • 評分評分:
  • 下載下載:150
  • 收藏至我的研究室書目清單書目收藏:1
由於土壤對重金屬之吸持作用,故一般而言,重金屬在污染土壤中通常分布於0至30公分之表層,並呈現由上往下遞減之趨勢。然而,在工業區土地上建廠時,通常都會在原土地上覆蓋砂石以墊高地基,即所謂之級配,因而在砂石與原地土壤間形成「分層土壤」。本研究係以國內某工業區受鋅、鉻污染之土壤為對象,探討此二重金屬在此類土壤中之傳輸、吸持機制與聚積型態。結果顯示,由於級配與原土性質上之差異,特別是孔隙之不連貫性,故在兩者之分層處產生水分之「滯留」現象,致使水分中所含之鋅、鉻除聚積於級配外,在分層處亦累積相當量,甚且有部分採樣點在分層處之含量比其表層級配高,且可能因滯留而使水分橫面傳輸致使污染面擴大。而此滯留現象則可由比較水分在單一與分層土壤中之移動情形予以印證,實驗結果顯示後者之初始與最終出流時間明顯較前者慢,故工廠滲漏水中之鋅、鉻有較充分時間於分層處產生吸持作用。其次,吸附實驗結果指出,無論級配或原土對鋅、鉻之吸持多以吸附作用為主,且多數符合Langmuir等溫吸附模式。不過,由於現地級配或原土之pH值高達10左右,可能因此而產生氫氧化物及其他沉澱,以致現地級配或原土中之鋅、鉻含量較吸附實驗之吸附量高。至於對鋅、鉻聯結態之探討結果顯示,鋅的水溶態、交換態與碳酸鹽聯結態之比例約佔30﹪,而鉻之三種型態和則僅約10﹪,顯見鋅在土層中之移動性和生物有效性較鉻大。基於分層土壤之特有現象,日後在進行土壤污染調查時,對於分層土壤不僅應採集表層樣本,亦應採集分層處及其下層土壤進行分析。而鋅之高移動性和生物有效性,亦應監測其縱向與橫向之傳輸,以及在植物體中之累積,預防二次污染之產生。
Due to the adsorption of pollutants by soils, heavy metals have been found to accumulate in surface horizons of uniform soils and decrease with increasing depth. However, the transport and accumulation of metals in the stratified soils formed as a result of the pavement of in situ soils with sand materials during construction of plant at industrial area may be different. The Zn- and Cr-contaminated soils used in this study were sampled from an abandoned plant at southern Taiwan to investigate the accumulation characteristics of these two elements. The results showed that the heavy metals were mainly accumulated at surface and stratified layers. The high concentration of Zn and Cr at stratified layers implied that it resulted from the contact resistance of electroplating water at the layers. In addition, the contact resistance phenomenon was observed in the laboratory by leaching water through uniform and stratified soil columns. The initial and final dripping time used as the indicators of infiltration rate were longer in the stratified columns, thus the heavy metals in the carrying water might have enough time to conduct retention reactions. The adsorption experiments indicated that the major mechanism responsible for Zn and Cr retention was adsorption reaction, and Langmuir isotherm equation could be applied to the most studied soils as an adsorption model. However, due to the high pH values of around 10 and thus forming hydroxides and other salts, precipitation might be another mechanism to cause the in situ soils to retain more heavy metals than the experimental soils do. The results of sequential extraction pointed out that the total percentages of water soluble form, exchangeable form, and carbonate-associated form were about 30﹪for Zn and 10﹪for Cr. These results revealed that Zn had higher mobility and bioavailability than Cr.
第一章 前言………………………………………………1
1.1 研究動機…………………………………………1
1.2 研究目的與內容…………………………………2
第二章 文獻回顧…………………………………………4
2.1 土壤重金屬污染概述……………………………4
2.1.1 土壤重金屬污染來源…………………………4
2.1.2 國內土壤重金屬污染概況……………………4
2.2 重金屬之危害……………………………………5
2.3 重金屬在土壤環境中之宿命……………………7
2.3.1 重金屬在土壤中之反應……………………………7
2.3.2 重金屬在土壤中之移動……………………………8
2.4 重金屬在土壤環境中之吸持作用………………8
2.4.1 離子交換…………………………………………9
2.4.2 吸附作用…………………………………………10
2.4.2.1 土壤帶電原因…………………………………10
2.4.2.2 吸附機制………………………………………11
2.4.3 沉澱與共沉澱作用………………………………13
2.4.4 其他吸持作用……………………………………13
2.5 重金屬在土壤中之傳輸…………………………14
2.5.1 導水度………………………………………………14
2.5.2 質流的移動………………………………………18
2.5.2.1 水在飽和土壤中之移動……………………...18
2.5.2.2 水在不飽和土壤中之移動…………………...22
2.5.2.3 水在分層土壤中之移動…………………..….23
2.6 單一溶質之Langmuir等溫吸附模式……………26
2.7 重金屬在土壤中之聯結態………………………28
2.7.1 水溶態…………………………………………29
2.7.2 交換態…………………………………………29
2.7.3 碳酸鹽聯結態…………………………………30
2.7.4 鐵、錳氧化物聯結態………………………..30
2.7.5 有機物聯結態…………………………………30
2.7.6 殘留態…………………………………………31
2.8 鋅、鉻各論………………………………………31
2.8.1 鋅……………………………………………..31
2.8.2 鉻………………………………………………33
第三章 材料與方法………………………………………35
3.1 供試土壤之採集…………………………………35
3.2 土壤基本性質分析………………………………36
3.2.1 pH值……………………………………………36
3.2.2 有機質含量……………………………………37
3.2.3 土壤質地………………………………………37
3.2.4 陽離子交換容量………………………………38
3.2.5 鐵、錳含量……………………………………38
3.2.6 交換性鈣、鎂、鉀、鈉………………………38
3.2.7 鹽基飽和度……………………………………38
3.3 鋅、鉻含量………………………………………39
3.4 土壤導水度實驗…………………………………39
3.5 吸附實驗…………………………………………40
3.5.1 鋅、鉻溶液之配置及固液比…………………40
3.5.2 鋅、鉻吸附曲線………………………………41
3.6 重金屬型態之分析………………………………41
3.6.1 水溶態…………………………………………42
3.6.2 交換態…………………………………………42
3.6.3 碳酸鹽聯結態…………………………………42
3.6.4 鐵、錳氧化物聯結態…………………………42
3.6.5 有機物聯結態…………………………………42
3.6.6 殘留態…………………………………………43
第四章 結果與討論………………………………………44
4.1 供試土壤之基本性質……………………………..…44
4.1.1 pH值..…………………………………………44
4.1.2 有機質含量……………………………….….46
4.1.3 土壤質地………………………………….….46
4.1.4 陽離子交換容量………………………………47
4.1.5 交換性鹽基及鹽基飽和度……………………47
4.2 作業區受污染土壤之基本性質…………………48
4.3 鐵、錳含量………………………………………48
4.4 污染區土壤之鋅、鉻含量………………………51
4.5 土壤導水度實驗…………………………………58
4.6 鋅、鉻吸附實驗…………………………………61
4.6.1 鋅吸附實驗……………………………………62
4.6.2 鉻吸附實驗……………………………………73
4.7 供試土壤中鋅、鉻之聚積型態…………………74
第五章 結論………………………………………………84
第六章 參考文獻………………………………………..86
1. 丁力行,2000,土壤及地下水污染整治法實務與因應對策,永然文化出版公司,台北,第79-87頁。
2. 工業研究院,1996,土壤與地下水污染調查、監測與復育技術講義,工研院訓練班,新竹。
3. 王一雄,1997,土壤環境污染與農藥,明文書局,台北。
4. 王一雄、陳尊賢、李達源,1995,土壤污染學,國立空中大學,台北。
5. 王光明,2000,環境土壤化學,五南圖書出版公司,台北。
6. 中華土壤肥料學會,1995,土壤分析手冊第二版,台北。
7. 王紹漢,1992,環境污染與健康,科技圖書股份有限公司,台北。
8. 行政院環境保護署,2000,土壤及地下水污染整治法。
9. 行政院環境保護署,1991,土壤中水分及砷、鉻、銅、汞、鎘、鉛、鎳、鋅暫行檢驗方法。
10.朱德明,1990,植物與環境逆境,國立編譯館,台北。
11.吳文娟、朱海鵬,1992,台灣地區土壤重金屬含量現況之分析及探討,第三屆土壤污染防治研討會論文集,台北,第1-14頁。
12.林浩潭、李國欽、賴七仙,1992,台灣地區不同作物對土壤中重金屬吸收之探討,第三屆土壤污染防治研討會論文集,台中,PP.293-308頁。
13.洪崑煌譯,1992,土壤化學,國立編譯館,台北。
14.高肇藩,1990,給水工程,國立成功大學環境工程學系,台南,第118-119頁。
15.張如燕,1989,銅、鋅、鎘、鉛在受污染土體中移動及在土壤中各組成分之分佈,碩士論文,國立台灣大學農化研究所。
16.陳尊賢,張如燕,1990,鎘、鉛、鋅在台灣污染土壤中之存在形式與分佈,第二屆土壤污染防治研討會論文集,台北,第131-145頁。
17.郭魁士,1990,土壤學,中國書局,台北。
18.郭魁士,1980,土壤實驗,中國書局,台北。
19.萬鑫森譯,1987,基礎土壤物理學,國立編譯館,台北。
20.劉原宏、李芳胤、廖秋榮,1997,銅、鎘在幾種台灣土壤中聯結態與脫附性之探討,中國農業化學會誌,35: 683-691。
21.劉原宏,1995,台灣主要土壤中重金屬之吸附性與聯結態之探討,碩士論文,國立屏東技術學院環境工程研究所。
22.盧至人譯,1992,地下水的污染整治,國立編譯館,台北,第13-16頁。
23.歐陽嶠暉,1992,下水道工程學,長松出版社,台北,第65-127頁。
24.Alloway B. J., 1990, Heavy metals in soils, John Wiley and Sons, New York, US., pp. 29-39.
25.Alloway B. J., 1990, Soil processes and the behavior of metals, John Wiley and Sons, New York, US., pp.7-28.
26.Baver, L. D., W. H. Gardner and W. R. Gardner, 1972, Soil physics, 4thed, John Wiley and Sons, New York, US., pp. 343-345.
27.Beckett, P. H. T., 1989, The use of extractions in studies on trace metal in soils, sewage, and sludge treated soil, Advan.Soil Sci., 9: pp. 143- 176.
28.Bohn, H. L., B. L. McNeal and G. A. O’Connor, 1979, Soil chemistry, John Wiley and Sons, New York, US..
29.Brady, N. C., 1996, The nature and properties of soils, Prentice-Hall, New Jersey, US., pp. 160-165.
30.Campbell, G. S., 1985, Soil physics with basic, Elsevier Sci., publishing compamy, US.
31.Cavallaro, N. and M. B. McBride, 1984, Zinc and copper sorption and fixation by an acid soil clay:effect of selective dissolution, Soil Sci. Soc. Am. J., 48: 1050-1054.
32.Donahue, R. L., R.W. Miller and J. C. Shickulna, 1977, Soils-an introduction to soils and plant growth, Prentice-Hall, 4thed, pp. 91-92.
33.Elrashidi, M. A. and G. A. O’connor, 1982, Influence of solution composition on Sorption of zinc by soils, Soil Sci. Soc. Am. J., 46: 1153-1158.
34.Fergusson, J. E., 1990, The heavy element: chemistry, environmental impact and health effects, Pergamon press, New York, US., pp. 329-375.
35.Gardner, W. H. and J. A. Widtsoe, 1921, The movement of soil moisture, Soil Sci. Soc. Am., Proc., 11: 230.
36.Gruebel, K. A., J. A. Davis and J. Q. Leckie, 1988, The feasibility of using sequential extraction techniques for arsenic and selection in soil and sediments, Soil Sci. Soc. Am. J., 52: 390-397.
37.Harter, R. D., 1979, Adsorption of copper and lead by Ap and Bz horizons of several northeastern United States soils, Soil Sci. Soc. Am. J., 43: 679-683.
38.Harter, R. D., 1983, Effect of soil pH on adsorption of lead, copper, zinc and nickel, Soil Sci.Soc., Am. J., 47: 47- 51.
39.Hickey, M. G. and J. A. Kittrick, 1984, Chemical partition of Cd, Cu, Ni and Zn in soils and sediments containing high levels of heavy metals, J. Environ. Qual., 13: 372-376.
40.Hillel, D., 1998, Environmental soil physics, Academic press, London, UK., pp. 179-186.
41.Koehler, F. E., C. D. Modie and B. L. McNeal, 1982, Laboratory manual for soil fertility, Washington State Univ., Pullman, WA, US., pp. 89-102.
42.Kou, S. and A. S. Baker, 1980, Sorption of copper, zinc, and cadmium by some acid soils, Soil Sci. Soc. Am. J., 43: 679-683.
43.Manahan, S. E., 1991, Environmental chemistry, Lewis publishers, Michigan, US., pp. 381-400.
44.Marshall, T. J. and J. W. Holmes, 1998, Soil physics, Cambridge Univ. press, London , UK., pp. 131-134.
45.Marsily, G., 1986, Quantitative hydrogeology:Ground water hydrology for engineers, Academic press, Orlando, US..
46.McBride, M. B., 1994, Environmental chemistry of soil, Oxford Univ. press, New York, US..
47.McLaren, R. G. and D.V.Grawford, 1973, Studies on soil copper:I. The fractionation of Cu in soil, Soil Sci. Soc. Am. J., 24: 172-181.
48.Mihelcic, J. R. 1999, Fundamentals of environmental engineering, John Wiley and Sons, New York, US., pp. 194-196.
49.Miller, D. E. and W. H. Gardner, 1962, Water infiltration into stratified soil, Soil Sci. Soc. Am., Proc., pp. 115-119.
50.Miller, W. P., D. C. Martens, and L. W. Zelazny, 1986, Effect of sequence in extraction of trace metals from soils, Soil Sci. Soc. Am. J., 50:598-601.
51.Padmanabham, M., 1983, Adsorption-desorption behavior of Cu2+ at the goethite-solution interface, Aust. J. Soil Res., 21: 309-320.
52.Sanchez-Martin, M. J. and M. Sanchez-amazano, 1993, Adsorption and mobility of cadmium in natural, uncultivated soils, Environ. Qual., 22: 737-741.
53.Scheldrick, B. H., 1984, Analytical methods manual, Land Resourse Research Institute, Ottawa, Ontanio, Canada.
54.Shuman, L. M., 1985, Fractionation method for soil microelements, Soil Sci. Soc. Am. J., 14: 11- 22.
55.Shuman, L. M., 1979, Zinc, manganese and copper in soil fraction, Soil Sci. Soc. Am. J., 127: 10- 17.
56.Shuman, L. M., 1986, Effect of ionic strength amd anions on Zn adsorption by two soils, Soil Sci. Soc. Am. J., 50: 1438-1442.
57.Sposito, G., L. J. Lund, and A. C. Chang, 1982, Trace metal in air dry-zone field soils amended with sewage sludge:I. Fractionation of Ni, Cu, Zn, Cd, and Pb in solid phase, Soil Sci.Soc. Am. J., 46: 260-264.
58.Syers, J. K., M. G. Browman, G. W. Smillie and R. B. Corey, 1973, Phosphate sorption by soils evaluated by the Langmuir adsorption equation, Soil Sci. Soc. Am. J., 37: 358- 363.
59.Tessier, A., P. G. C. Campbell and M. Bisson, 1979, Sequential extraction procedure for the speciation particulate trace metals, Analytical chemistry, 51: 884-851.
60.Zhang, M., Y. C. Li, and D. V. Calvert, 1997, Fractionation of iron, aluminum, and phosphorus in selected sandy soil under citrus production, Soil Sci. Soc. Am. J., 61: 794-801.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top