跳到主要內容

臺灣博碩士論文加值系統

(3.238.225.8) 您好!臺灣時間:2022/08/08 23:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳文吉
研究生(外文):Wen-Ji Chen
論文名稱:聚電解質加強超過濾移除水中重金屬之研究
論文名稱(外文):Polyelectrolyte-Enhanced Ultrafiltration of Heavy Metals from Aqueous Stream
指導教授:黃益助
指導教授(外文):Yi-Chu Huang
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:環境工程與科學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:107
中文關鍵詞:聚電解質超過濾
外文關鍵詞:polyelectrolyteultrafiltrationcoppercadmium
相關次數:
  • 被引用被引用:15
  • 點閱點閱:429
  • 評分評分:
  • 下載下載:103
  • 收藏至我的研究室書目清單書目收藏:0
本研究以聚電解質加強超過濾(Polyelectrolyte-Enhanced Ultrafiltration;PEUF)移除水中Cu2+、Cd2+,PEUF是利用聚電解質鍵結水中的Cu2+、Cd2+,再以薄膜攔截分子量較高的聚電解質,以到達去除Cu2+、Cd2+之目的,其中聚電解質為聚苯乙烯硫酸-順丁烯二酸鈉鹽( poly(styrenesulfonic acid-co-maleic acid)sodium,PSSM,average MW=20000 )為一陰離子性聚電解質,而薄膜為再生纖維膜(regenerated cellulose membrane,MWCO = 10000)。
研究主要探討Metal/polyelectrolyte(M/P)、pH及NaCl等影響薄膜去除Cu2+、Cd2+的影響因子,依實驗步驟可分為:(1)PSSM的前處理,(2)求M/P及pH等最佳操作參數,(3)探討NaCl對於薄膜移除Cu2+、Cd2+的影響,(4)添加NaCl及HCl對PSSM的再生率探討,(5)再生PSSM的性能測試。
PSSM的平均分子量約為20000,但其分子量分佈很廣,故以攪拌式超過濾系統進行前處理,該系統採MWCO=10000的再生纖維膜,可攔截分子量大於10000的PSSM,收集經前處理的PSSM,添加於含Cu2+、Cd2+的溶液中,以配製不同M/P的混合溶液,以HNO3和NaOH調配7種不同的pH,即pH=2、3、4、5、6、7、8等,進行超過濾實驗,以求最佳的M/P比及pH。由於PSSM僅能鍵結固定量的Cu2+或Cd2+,且pH<7時,Cu2+、Cd2+不會形成大量氫氧化物沉澱,故選擇pH=6及MCu/P = 31.5、MCd/P = 17.8為其最佳操作參數,於此參數下,RCu及RCd均趨近於100﹪,且混合重金屬溶液的RCu、RCd均略低於單一重金屬溶液,但亦趨近於100﹪。
於pH=6及MCu/P = 31.5、MCd/P = 17.8的單一及混合重金屬溶液,經超過濾系統處理,Rmetal隨VCF的增加而有下降的趨勢。添加不同量的NaCl於pH=6及MCu/P = 31.5、MCd/P = 17.8的單一及混合重金屬溶液,經超過濾系統處理,RCu、RCd隨NaCl添加量的增加而下降。
收集pH=6、MCu/P = 31.5、MCd/P = 17.8的單一重金屬溶液的滯留液,添加NaCl或以HCl調低pH值,以分離Cu2+、Cd2+與PSSM間的鍵結,再經超過濾系統攔截收集PSSM。研究發現添加NaCl對於PSSM的再生較不理想,尤其是對單一重金屬(Cu2+)溶液內的PSSM,其再生率約只有60﹪,而添加HCl對於PSSM的再生率趨近於100﹪。
於pH=6、MCu/P = 31.5,以再生的PSSM進行鍵結Cu2+的試驗,研究發現再生的PSSM對於Cu2+、Cd2+的鍵結均無法達預期的趨近於100﹪,因為再生後PSSM的滯留液內含部分Cu2+、Cd2+,所以須再添加額外的PSSM才能達到約100﹪的去除率。
Performance of polyelectrolyte enhanced ultrafiltration( PEUF ) method was investigated in recovering Cu2+ and Cd2+ from aqueous solution. Water-soluble anionic polyelectrolyte, Poly(styrenesulfonic acid-co-maleic acid)sodium ( PSSM, average MW=20000 ), was added into heavy metal solution. The Cu2+ and Cd2+ bound to the PSSM which has a high molecular weight were rejected by a regenerated cellulose membrane with 10,000 molecular weight cut-off(MWCO). The effects of various operating parameters such as metal/polyelectrolyte(M/P), pH and NaCl were investigated. Five experimental steps were performed:(1)pretreatment of PSSM by an ultrafiltration membrane(MWCO=10000);(2)determination of an optimal ratio between metal and polyelectrolyte concentrations, and an optimal pH;(3)NaCl addition on the influence of metal rejection;(4)addation of NaCl and HCl for PSSM regeneration;(5) performance evaluation of regenerated PSSM.
PSSM with an average molecular weight of approximately 20000 has a wide molecular weight distribution. Therefore, polyelectrolyte needs to be pretreated by an ultrafiltration membrane(MWCO=10,000) to remove the lower molecular weight components to the level that only a trace concentration of polyelectrolyte was detected in the permeate. The Cu2+ or Cd2+ concentration was maintained at a constant level of 10mg/L and polyelectrolyte concentration was varied in the range of 10mg/L to 1000mg/L. The pH value was adjusted in the range of 2 to 8 using HNO3 and NaOH solution. Then, the solution was treated using a stirred ultrafiltration system to determine the optimal operating condition.
Since polyelectrolyte bound constant amount of metals and less amount of Cu2+, Cd2+ precipitated as metal hydroxides in lower pH(pH<7), therefore the optimal operating condition of MCu/P = 31.5, MCd/P = 17.8 and pH=6 were selected to obtain a metal rejection up to 100%. The rejection of Cu2+and Cd2+ mixture in aqueous solution was lower than that of individual metal ion solution. Rejection of Cu2+and Cd2+ decreased with increasing VCF(volumetric concentration factor)at MCu/P = 31.5, MCd/P = 17.8 and pH=6. At the same operation condition, the presence of NaCl reduced the rejection on Cu2+and Cd2+.
For economical reasons, the PSSM needed to be regenerated from the retentate for reuse. Two methods of PSSM regeneration were developed in this study that were the addition NaCl or HCl into retentate to regenerate PSSM. The sodium ions replaced the copper and cadmium ions bound to the PSSM. The aqueous stream was then filtered through an ultrafiltration unit, then the PSSM was retained by the membrane. The regeneration of PSSM was unsatisfied with addiation of NaCl, especially for solution containing Cu2+ and PSSM. Acidification was acceptably satisfactory with addition of hydrochloric acid to regenerate PSSM that hydrogen ions replaced the copper and cadmium ions. Only a trace amount of Cu2+ or Cd2+ remained in retentate after PSSM regeneration. Therefore, PSSM regeneration with HCl is better than that with NaCl.
總目錄
目次 頁次中文摘要…………………………………………………………Ⅰ
英文摘要……………………………………………………Ⅳ
致謝………………………………………………………………Ⅶ
總目錄………………………………………………………Ⅷ
表目錄………………………………………………………ⅩⅡ
圖目錄………………………………………………………ⅩⅢ
第一章 前言………………………………………1
1.1研究動機………………………………………………1
1.2研究目的…………………………………………………2
第二章 文獻回顧……………………………………………3
2.1重金屬………………………………………………3
2.1.1重金屬定義………………………………………3
2.1.2重金屬基本資料…………………………………3
2.1.3重金屬來源…………………………….8
2.1.4重金屬污染…………………………………………8
2.1.5重金屬廢液處理技術………………………………8
2.1.6重金屬對生物和人體之毒性及危害…………………11
2.2聚電解質……………………………………13
2.2.1聚電解質發展歷史……………………………13
2.2.2聚電解質的定義…………………………………14
2.2.3聚電解質的分類………………………………14
2.2.4聚電解質之混凝機制……………………………17
2.2.5 影響聚電解質的因素……………………………19
2.2.6聚電解質的鍵結機制……………………………21
2.2.7聚電解質的應用………………………………22
2.3薄膜分離程序………………………………23
2.3.1薄膜發展歷史………………………………23
2.3.2薄膜材質及其物化性質………………………25
2.3.3薄膜程序種類與過濾原理…………………29
2.3.4薄膜過濾方式………………………………34
2.3.5影響薄膜過濾的因素………………………34
2.3.6薄膜技術應用………………………………36
2.3.7聚電解質加強超過濾…………………………37
第三章 實驗材料與方法………………………………39
3.1實驗材料 ……………………………………39
3.2實驗設備………………………………………41
3.3計算公式…………………………………44
3.4實驗流程…………………………………46
3.4.1聚電解質的前處理………………………………49
3.4.2決定M/P及pH等最佳操作參數……………49
3.4.3探討NaCl對於薄膜去除重金屬離子的影響…50
3.4.4聚電解質的再生………………………………50
3.5分析方法……………………………………51
3.5.1聚電解質濃度的偵測…………………………51
3.5.2銅、鎘離子濃度的偵測……………………51
第四章 結果與討論…………………………………53
4.1 PSSM的前處理………………………………53
4. 2於不同pH及M/P比,薄膜對於Cu2+、Cd2+的去除率及相對流通量變化
情形……………………………………56
4. 3於pH=6及MCu/P=31.5、MCd/P=17.8,VCF與Rmetal、relative flux
的關係……………………………………………62
4. 4於pH=6及MCu/P=31.5、MCd/P=17.8,探討NaCl對於薄膜去除Cu2+、
Cd2+的影響…………………………………66
4.5添加NaCl用以再生PSSM…………………73
4.6添加HCl用以再生PSSM……………………76
4.7再生PSSM的性能測試………………………80
第五章 結論與未來研究方向…………………………84
5.1結論………………………………………………84
5.2本研究成果之貢獻………………………………86
5.3未來研究之建議………………………………………86
第六章 參考文獻…………………………………88
附錄………………………………………………………94
作者簡介…………………………………………………………107
表目錄
目次 頁次
表2-1 金屬於地殼中的含量與儲量圖……………………6
表2-2 常見的聚電解質…………………………………15
表2-3 各類聚電解質之應用……………………………24
表2-4 常見MF、UF及RO膜的材質………………27
圖目錄
目次 頁次
圖2-1 聚電解質與膠體顆粒的反應機制……………………18
圖2-2 各種薄膜程序的操作原理-a……………………………30
圖2-3 各種薄膜程序的操作原理-b……………………………31
圖2-4 微過濾、超過濾及逆滲透之應用範圍………………33
圖2-5 重力流式過濾(a)與掃流式過濾(b)……………35
圖3-1 攪拌式超過濾系統之結構圖…………………………42
圖3-2 攪拌超過濾系統實圖…………………………………43
圖3-3 再生纖維膜實圖………………………………………45
圖3-4 實驗流程圖……………………………………………47
圖3-5 PEUF系統示意圖……………………………………48
圖3-6 PSSM檢量線………………………………………………52
圖3-7 Cd檢量線…………………………………………………52
圖3-8 Cu檢量線…………………………………………………52
圖4-1 MWCO = 10000薄膜於不同壓力的超純水過濾通量.….54
圖4-2 MWCO = 10000薄膜於20psi,超純水過濾通量與VCF的關係
圖………………………………………………54
圖4-3 於不同pH,薄膜對於經前處理PSSM的去除率……55
圖4-4 於不同pH、MCu/P的單一重金屬(Cu2+)溶液中,薄膜對於Cu2+的
去除率………………………………………57
圖4-5 於不同pH、MCd/P的單一重金屬(Cd2+)溶液中,薄膜對於Cd2+的
去除率......................57
圖4-6 於不同pH、MCu/P的單一重金屬(Cu2+)溶液中,濾液的相對流通
量變化情形…………………………………60
圖4-7 於不同pH、MCd/P的單一重金屬(Cd2+)溶液中,濾液的相對流
通量變化情形…………………………………60
圖4-8 於不同pH及MCu/P=31.5、MCd/P=17.8的混合重金屬溶液中,薄膜
對於Cu2+、Cd2+的去除率率………………61
圖4-9 於不同pH及MCu/P=31.5、MCd/P=17.8的混合重金屬溶液中,
濾液的相對流通量變化情形………………………61
圖4-10 於pH=6,薄膜對於不含PSSM的單一及混合重金屬溶液的Cu2+、
Cd2+去除率與VCF的關係……………64
圖4-11 於pH=6,薄膜對於不含PSSM的單一及混合重金屬溶液的相對
流通量與VCF的關係……………64
圖4-12 於pH=6及MCu/P=31.5、MCd/P=17.8的單一及混合重金屬溶液中,
薄膜對於Cu2+、Cd2+的去除率與VCF的關係………………65
圖4-13 於pH=6及MCu/P=31.5、MCd/P=17.8的單一及混合重金屬溶液中,
薄膜的相對流通量與VCF的關係………67
圖4-14 於pH=6,添加不同量的NaCl於不含PSSM的單一重金屬溶液,
薄膜對於Cu2+、Cd2+的去除率……67
圖4-15 添加不同量NaCl於pH=6、MCu/P=31.5的單一重金屬(Cu2+)
溶液,薄膜對於Cu2+的去除率…………69
圖4-16 添加不同量NaCl於pH=6、MCd/P=17.8的單一重金屬(Cd2+)
溶液,薄膜對於Cd2+的去除率……………69
圖4-17 添加不同量NaCl於pH=6及MCu/P=31.5、MCd/P=17.8的混合重
金屬溶液,薄膜對於Cu2+的去除率……………71
圖4-18 添加不同量NaCl於pH=6及MCu/P=31.5、MCd/P=17.8的混合
重金屬溶液,薄膜對於Cd2+的去除率…………71
圖4-19 於pH=6,添加不同量的NaCl於不含PSSM的單一重金屬溶
液,濾液的相對流通量變化情形………72
圖4-20 添加不同量NaCl於pH=6、MCu/P=31.5的單一重金屬(Cu2+)
溶液,濾液的相對流通量與VCF的關係…74
圖4-21 添加不同量NaCl於pH=6、MCd/P=17.8的單一重金屬(Cd2+)
溶液,濾液的相對流通量與VCF的關係…74
圖4-22 添加不同量NaCl於pH=6及MCu/P=31.5、MCd/P=17.8的混合
重金屬溶液,濾液的相對流通量與VCF的關係…75
圖4-23 以NaCl添加於pH=6及MCu/P=31.5、MCd/P=17.8的單一重金屬
溶液的滯留液,NaCl添加量與PSSM再生率的關系…………75
圖4-24 以NaCl添加於pH=6及MCu/P=31.5、MCd/P=17.8的單一重金屬
溶液的滯留液,NaCl添加量與相對流通量的關係………77
圖4-25 添加HCl於pH=6及MCu/P=31.5、MCd/P=17.8的單一及混合重
金屬溶液的滯留液,pH與PSSM再生率的關係……………79
圖4-26 添加HCl於pH=6及MCu/P=31.5、MCd/P=17.8的單一及混合重
金屬溶液的滯留液,濾液的相對流通量與pH 的關係…………79
圖4-27 再生的PSSM調配成pH=6、MCu/P=31.5的單一重金屬(Cu2+)
溶液,薄膜對於Cu2+的去除率與VCF的關係…………………81
圖4-28 再生的PSSM調配成pH=6、MCu/P=31.5的單一重金屬(Cu2+)
溶液,濾液的相對流通量與VCF的關係…83
王一雄,1997,土壤環境污染與農藥,國立編譯館,台北,第229-
260頁。
井出哲夫主編,1991,水處理工程-下冊,科技圖書,台北,第339-342
頁。
呂維明、呂文芳,1994,過濾技術,高立圖書,台北,第300-309頁。
阮國棟,1989,工業廢水處理技術-有害成分去除法,科技出版社,新
竹,第24-30、54-68頁。
林建中,1989,高分子化學原理,狀元出版社,台北,第87-93頁。
郭文正、曾添文,1988,薄膜分離,高立圖書,台北,第15-36頁。
陳靜生,1992,水環境化學,曉園出版社,台北,第131-146頁。
陳永甡編著,1998,環境保護法規,文經圖書,台北,第168-182頁。
章裕民,1998,環境工程化學,文京圖書,台北,第471-472頁。
傅崇德、何鴻哲、葉金明、王成財,1999,工業水污染防治,高立圖書,
台北,第118頁。
張漢昌,1997,廢水處理,文京圖書,台北,第35-37頁。
張錦松,1994,薄膜過濾程序,自來水會刊,50:91-95。
楊萬發,1987,水及廢水處理化學,茂昌圖書,台北,第242-243頁。
趙承琛,1985,界面科學特論,復文書局,台南,第28-33頁。
蔡騰龍,1984,高分子聚合物於水處理之應用,正文書局,台北,第1-6
頁。
蔡永興、陳見財、張啟達、潘建成、朱昱學,1997,電鍍業減
廢回收與污染防治,經濟部工業局,台北,第59-90頁。
Aliane, A., N. Bounatiro, A.T. Cherif, and D.E. Akretche,
2000, Removal of chromium from aqueous solution by
complexation-ultrafiltration using a water-soluble
macroligand, Water Research, Vol. 35, No. 9, pp. 2320-2326.
Bronstein, L.M., O.A. Platonova, A.N. Yakunin, I.M. Yanovskaya,
and P.M. Valetsky, 1999, Metal colloid formation in the
complexes of polyelectrolyte gels with oppositely charged
surfactants, Physicochemical and Engineering Aspects, Vol.
147, pp. 221-231.
Benavente, J., and G. Jonsson, 1994, Effect of pressure on some
parameters measure with composite and porous membranes,
Separation Science and Technology, Vol. 29, pp. 1705-1717.
Bodzek, M., I. Korus, and K. Loska, 1998, Application of the
hybrid complexion-ultrafiltration process for removal of
metal ions from galvanic wastewater, Desalination, Vol.
121, pp. 117-121.
Baticle, P., C. Kiefer, N. Lakhchaf, O. Leclerc, M. Persin,
and J. Sarrazin, 1999, Treatment of nickel containing
industrial effluents with a hybrid process comprising of polymer complexion —ultrafiltration-electrolysis, Separation and Purification Technology, Vol. 18, pp. 195-207.
Choi, Y.K., S.B. Lee, D.J. Lee, Y. Ishigami, and T. Kajiuchi, 1998, Micellar enhanced ultrafiltration using PEO-PPO-PEO block copolymers, Journal of Membrane Science, Vol. 148, pp. 185-194.
Guo, L., B.J. Hunt, and P.H. Santschi, 2000, Ultrafiltration behavior of major ions(Na, Ca, Mg, and SO4) in natural waters, Water Research, Vol. 35, No. 6, pp. 1500-1508.
Guo, W., H. Uchiyama, E.E. Tucker, S.D. Christian, and J.F. Scamehorn, 1996, Use of polyelectrolyte-surfactant complexes in colloid-enhanced ultrafiltration, Physicochemical and Engineering Aspects, Vol. 123, pp. 695-703.
Juang, R.S., and C.H. Chiou, 2000, Ultrafiltration rejection of dissolved ions using various weakly basic water-soluble polymer, Journal of Membrane Science, Vol. 177, pp. 207-214.
Korus, I., M. Bodzek, and K. Loska, 1999, Removal of zinc and nickel ions from aqueous solution by means of the hybrid complexation-ultrafiltration process, Separation and Purification Technology, Vol. 17, pp. 111-116.
Kabsch-Korbutowicz, M., and T. Winnicki, 1995, Application of modified polysulfone membrances to the treatment of water solutions containing humic substances and metal ions, Desalination, Vol. 105, pp. 41-49.
Langevin, D., 2001, Polyelectrolyte and surfactant mixed solutions. Behavior at surfaces and in thin films, Advances in Colloid and Interface Science, Vol. 89, pp. 467-484.
Muslehiddinoglu, J., Y. Uludag, H.O. Ozbelge, and L. Yilmaz, 1998, Effect of operating parameter on selective separation of heavy metals from binary mixtures via polymer enhanced ultrafiltration, Journal of Membrane Science, Vol. 140, pp. 251-266.
Rivas, B.L., and I. Moreno-Villoslada, 2001, Polyelectrolyte behavior of three copolymers of 2-acrylamido-2-methyl- propanesulfonic acid and N-acryloyl-N-methylpiperazine studied by ultrafiltration, Journal of Membrane Science, Vol. 187, pp. 271-275.
Smith, B.F., R.R. Gibson, G.D. Jarvinen, M.M. Jones, M.T. Lu, T.W. Robison, N.C. Schroeder, and N. Stalnaker, 1998, Evalution of synthetic water-soluble metal-binding polymers with ultrafiltration for selective concentration of americium and plutonium, Journal of Radioanalytical and Nuclear Chemistry, Vol. 234, pp. 219-223.
Sriratana, S., and J.F. Scamehorn, 1996, Use of polyelectrolyte -enhanced ultrafiltration to remove chromate from water, Separation science and technology, Vol. 31, pp. 2493-2504.
Tabatabai, A., J.F. Scamehorn, and S.D. Christian, 1995, Economic feasibility study of polyelectrolyte-enhanced ultrafiltration(PEUF)for water softening, Journal of Membrane Science, Vol. 100, pp. 193-207.
Uludag, Y., H.O. Ozbelge, and L. Yilmaz, 1996, Removal of mercury from aqueous solution via polymer-enhanced ultrafiltration, Journal of Membrane Science, Vol. 129, pp. 93-99.
Vieira, M., C.R. Tavares, R. Bergamasco, and J.C.C. Petrus, 2001, Application of ultrafiltration-complexion process for metal removal from pulp and paper industry wastewater, Journal of Membrane Science, Vol. 194, pp. 273-276.
Yuasa, A., 1998, Drinking water production by coagulation -microfiltration and adsorption-ultrafiltration, Water Science Technology, Vol. 37, No 10, pp. 135-146.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊