跳到主要內容

臺灣博碩士論文加值系統

(18.208.126.232) 您好!臺灣時間:2022/08/12 01:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳宜伶
研究生(外文):Yi Ling Chen
論文名稱:氧化鈦(Ⅳ)覆鍍方法對多氯聯苯光催化效應之影響
論文名稱(外文):Effect of Titanium Oxide(Ⅳ) Coating Methods on the Photocatalysis of PCBs
指導教授:林耀堅
指導教授(外文):Yaw-Jian Lin
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:環境工程與科學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:152
中文關鍵詞:光催化劑多氯聯苯光解二氧化鈦
外文關鍵詞:Polychlorinated BiphenylsPhotodegradationDegradation rateHalf lives
相關次數:
  • 被引用被引用:32
  • 點閱點閱:365
  • 評分評分:
  • 下載下載:74
  • 收藏至我的研究室書目清單書目收藏:0
多氯聯苯的物理、化學性質極為穩定,因而多氯聯苯被廣泛的應用在工業界,而最終導致現今嚴重的環境污染,且因其不易為微生物所分解、在自然界中殘留時間長,使得污染水體的多氯聯苯容易間接的經由生物濃縮以食物鏈的方式進入人體累積,而造成許多慢性毒害。光解是污染物質於環境中自然降解的重要途徑,光催化程序分解有機物的系統中二氧化鈦的使用型態可分為二氧化鈦粉末及二氧化鈦薄膜兩種形式,使用粉末的研究者將二氧化鈦粉末直接放入溶液中,形成懸浮液,然後照光分解反應物。粉末狀二氧化鈦的懸浮特性,其會產生光遮蔽效應以及增加萃取困難度,一直是UV/TiO2處理程序中有待解決的問題;使用二氧化鈦薄膜參與反應則是利用化學蒸鍍(CVD)、漬浸塗佈法等鍍於基材,然後將之置於溶液中,照光於薄膜上,產生分解。若將二氧化鈦覆膜在合適的擔體(support)上,形成固定化之二氧化鈦觸媒,則可避免二氧化鈦的懸浮性問題。
先前試驗主要探討包括:(1)評估三種不同光催化劑(二氧化鈦、氧化鋯、氧化釔)對處理多氯聯苯之效益(2)分別比較不同光催化劑濃度及光照時間對多氯聯苯降解之影響。結果顯示以二氧化鈦為光催化劑時對處理多氯聯苯有最佳處理效果。且利用懸浮態光催化劑過量時會產生光遮蔽效應,並且比較二氧化鈦、氧化鋯、氧化釔三種光催化劑對PCBs 138光催化效果,結果發現以二氧化鈦之成效與經濟效益最高,因此選定以二氧化鈦為固定相之光催化劑後,再評估 (1)多氯聯苯於以不同二氧化鈦覆鍍方法之光照瓶中進行光催化處理,(2)不同光源(氙燈、紫外光燈)光催化降解多氯聯苯之效應,(3)PCB 138不同濃度對光催化降解之影響。以上述系統之結果,比較氙燈光源和UV光源之穩定性及可行性,希望能提供一種低成本、高處理效果之方式來處理受多氯聯苯污染之水體。
多氯聯苯於以不同二氧化鈦覆鍍方法之光照瓶中進行光催化處理,覆鍍前玻璃珠前處理分別為G-1、G-2、G-3、G-4四種處理後浸泡於不同濃度二氧化鈦(1 w%、5 w%),結果發現玻璃珠四種前處理後覆鍍TiO2利用X-ray繞射測量發現並未影響二氧化鈦之成分,二氧化鈦結晶型態有三種,分別為銳鈦礦、金紅石、和板鈦礦,其中以銳鈦礦最具有光化學活性。二氧化鈦的X-ray繞射測量圖,在2θ=25∘附近出現波鋒,此可作為判斷生成銳鈦礦結晶的依據。純化過之二氧化鈦含有較多的銳鈦礦結晶,利用四異丙基鈦酸酯合成的二氧化鈦薄膜進行X-ray繞射測量,可發現其由四異丙基鈦酸酯中二氧化鈦之銳鈦礦純度較商業上P-25為高。
由塗佈結果發現TiO2未純化時以TiO2含量5 w%光催化降解多氯聯苯效果較佳,然而在TiO2純化過程發現,TiO2含量皆為1 w%時,以TiO2純化過之光催化效果較好,主要原因為純化過之TiO2含量5 w%時,發現塗佈於玻璃珠之TiO2分散性不佳,且有大顆粒的聚集,表面顆粒累積過多超過其玻璃珠表面可黏著量,易形成顆粒脫落,附著效果差。而未純化過之TiO2含量為5 w%塗佈於玻璃珠最均勻且不易有TiO2 脫落的現象。而四種玻璃珠載體前處理中以HF溶液處理後覆鍍二氧化鈦光催化降解多氯聯苯之效果最佳(PCB138 t1/2=11.88 hr),相較之下玻璃珠載體前處理中,以氫氧化鈉溶液在覆鍍二氧化鈦光催化降解多氯聯苯效果最差(PCB138 t1/2=23.1 hr),在多氯聯苯 138 之降解途徑中,鄰位、間位、對位皆可見,而其中途徑以間位為主。
PCBs are almost non-biodegradable that keeps them in the nature for decades and caused serious pollution. PCBs in contaminated water can be accumulated in humans that create chronic toxic effects including cancer, damages of heart, liver, kidney and the systems of central nerve and reproduction. Photodegradation is an important mechanism for the degradation of pollutants especially through indirect processes of photosensitizer with sunlight or xenon lamp. Studies showed that photosensitizers such as titanium dioxide, zirconium oxide and yttrium oxide can significantly absorb light energy and form free radicals to degrade PCBs through dechlorination. The PCBs photodegradation will be investigated on its degradation rate, rate constant and half-life. In the preliminary test of the effect of potocatalysts on PCBs photodegradation, the results showed that using potocatalyst has a positive effect on PCBs photodegradation increasing the degradation rate and its efficiency. Photodegradation of PCBs could be a pseudo first order reaction , and the degradation rate of PCBs was in direct proportion to initial concentration of PCBs.
The photocatalytic process appears to be a “soft” destruction method requiring ambient temperatures and pressures. Most studies related to such photodegradation reactions have been carried out using suspensions of powdered TiO2 (usually Degussa P-25) in the polluted aqueous solution. However, from a practical point of view it may not be possible to use catalyst suspensions in slurry photoreactors because of which reason, attempts have been made to immobilize the catalyst on rigid supports. In this study, we have tested different methods for supporting TiO2 on glass beads,and we have evaluated the possibilities of using these methods as photocatalysts on the photodegradation of PCB Congener 138 in aqueous solutions. Important conclusions have been obtained about the influence of the coating methods on the photodegradation of PCB congener 138.Photodegradation of PCBs could be a pseudo first order reaction. The results showed that higher congeners can be degraded first. It had the trend of degradation form high congeners to low congeners that shows the character of PCB congener 138 recombination. The common pathway for PCBs photodegradation are through ortho, meta and para dechlorination. Above all meta are the most dechlorination for the 3 hours exposure.
中文摘要……………………………………………………..…….I
英文摘要………………………………………………………….IV
誌謝……………………………………………………………….VI
總目錄…………………………………………………………...VII
表目錄…………………………………………………………...XII
圖目錄…………………………………………………………..XIII
第一章 前言……………………………………………….… .1
1.1 研究緣起…………………………………………………….....1
1.2 研究目的……………………………………………………... .3
第二章 文獻回顧……………………………………………...5
2.1 多氯聯苯…………………………………………………….....5
2.1.1 多氯聯苯的來源…………………………………………..5
2.1.2多氯聯苯的特性………………………………………….…6
2.1.3多氯聯苯環境之宿命………………………………………..7
2.1.4台灣多氯聯苯之重大危害事件…………………………….9
2.1.5多氯聯苯之毒性…………………………………………....10
2.1.6多氯聯苯之處理方式………………………………….….12
2.2光化學反應概述……………………………………………...13
2.2.1光催化觸媒程序發展及應用……………………………..16
2.2.2二氧化鈦的特性…………………………………………..18
2.2.3氧化鋯的特性………………………….……………….…19
2.2.4氧化釔的特性………………………………….………….21
2.2.5反應機制………………………………………….…….…21
2.3二氧化鈦薄膜製備…………………………………….….….23
2.3.1製作二氧化鈦微結晶粒子………………………….….…24
2.3.1.1以醇氧鈦為原料的製備方法………………………….24
2.3.1.2以無機鹽類為原料的製作方法……………………….28
2.3.2二氧化鈦光觸媒塗佈方法………………………………..32
2.4光解處理的控制因子………………………………………...33
2.4.1光源………………………………………………………..34
2.4.1.1汞燈…………………………………………………….41
2.4.1.2 UV燈…………………………………………………..41
2.4.1.3氙燈…………………………………………………….42
2.4.1.4自然日光……………………………………………….43
2.4.2光照強度…………………………………………………..45
2.4.3光感物質…………………………………………………..46
2.5光解結果……………………………………………………...47
2.5.1光解速率…………………………………………………..47
2.5.2光解半衰期………………………………………………..48
2.5.3光量子產額………………………………………………..48
2.6降解多氯聯苯之光降解機制………………………………...49
第三章 材料與方法…………………………………………52
3.1多氯聯苯同性物 138………………………………………...52
3.2光催化劑……………………………………………………...52
3.2.1TiO2之純化………………………………………………...52
3.3二氧化鈦覆鍍方法…………………………………………...53
3.3.1玻璃珠前處理……………………………………………..53
3.3.1.1 5 M之氫氧化鈉……………………………………...54
3.3.1.2 氫氟酸溶液…………………………………..………54
3.3.1.3 濃硫酸、雙氧混合水溶液…………………………..54
3.3.1.4 HF、雙氧水、氨水混合溶液………………………55
3.3.2 利用sol-gel方法來覆鍍二氧化鈦於玻璃珠及沸石…….55
3.3.2.1添加沸石覆鍍於樣品瓶……………………………….55
3.3.2.2二氧化鈦覆鍍於玻璃珠方式………………………….56
3.4紫外光燈……………………………………………………...57
3.5氙燈…………………………………………………………...59
3.6氣相色層分析………………………………………………...59
3.7降解途徑之確認方法…………………………………………61
3.8X-ray繞射分析(XRD)………………………………………...62
3.9實驗流程……………………………………………………...62
3.9.1背景實驗…………………………………………………..63
3.9.2氙燈照射不同光催化劑系統……………………………..64
3.9.3催化劑劑量對光催化降解多氯聯苯之比較……………..64
3.9.4固定相催化劑光催化降解多氯聯苯之效應……………..65
3.9.5分析多氯聯苯在不同光照能量與光照時間下的降解效
應…………………………………………………..……...65
3.9.6分析濃度對多氯聯苯光解速率…………………………..66
3.9.7分析多氯聯苯光降解之產物……………………………..66
3.9.8綜合評估各種實驗設計與操作因子的影響……………..68
第四章 結果與討論…………………………………….…...68
4.1懸浮態光催化劑光降解多氯聯苯試驗……………………...68
4.1.1光催化劑對多氯聯苯138 降解之影響…………………..68
4.1.2光催化劑含量對多氯聯苯138降解之影響……………...75
4.1.3多氯聯苯138初始濃度對降解之影響…………………..77
4.1.4三種光催化劑對多氯聯苯138降解之影響……………..85
4.2不同二氧化鈦覆鍍方法降解多氯聯苯之效應………...……95
4.2.1玻璃珠前處理效應…………………………………………95
4.2.1.1二氧化鈦結晶型態分析…………………..………….95
4.2.1.2光催化降解多氯聯苯之效應……………………….101
4.2.1.3二氧化鈦含量之影響………………………………107.
4.2.2不同成分之二氧化鈦覆鍍降解多氯聯苯之效應……….108
4.2.2.1二氧化鈦結晶型態分析……………………………108
4.2.2.2光催化降解多氯聯苯之效應……………………….111
4.3光照能量與時間對多氯聯苯的效應……………………….113
4.3.1不同光源之影響…………………………………………113
4.3.2不同多氯聯苯138濃度之影響………………………….117
4.4多氯聯苯congener 138 之光降解途徑…………………….120
第五章 結論………………………………………………..127
第六章 參考文獻…………………………………………..130
附錄 PCBs之相對滯留時間…..………………………..143
作者簡介………………………………………….……………..152
1. 王國華、謝永旭、黃國書,1994,光催化分解水中單氯酚污染物之控制研究,中國環境工程學刊,第四卷,第二期,第 111-118頁。
2. 王國華、謝永旭、柯人彰、石鳳城,1999,以UV/TiO2程序處理人纖廢水可行性之研究,元培學報,第六期,第 69-77頁。
3. 申永順、林志鴻、黃丙守,2001,以185 nm UV 光氧化程序處理含芳香族有機污染物水溶液反應,第二十六屆廢水處理技術研討會論文集,第1-109頁。
4. 李元陞、劉鎮宗、邱求三,1998,以UV/TiO2光化學氧化方法處理實驗室有機廢水之研究,宜蘭農工學報,第十六期,第119-131頁。
5. 金其鏞,1999,設計光催化氧化反應器降解有機農藥(氣態)的研究,第六屆海峽兩岸環境保護研討會,第 670-675頁。
6. 金燦相,環境毒性有機污,淑馨出版社,台灣(1998),第20-22頁。
7. 林耀堅、李安培、鄧麗珊、劉乃維、林浩潭,2000,不同光源對硝基苯醛光異構化之影響,第二十五屆廢水處理技術研討會論文集,第473-482頁。
8. 胡賀捷,2000,在氧化鋁板上製備二氧化鈦薄膜的研究,碩士論文,國立台灣大學化學工程學研究所。
9. 洪崇軒、左啟民、楊欣瑜、盧秉志、林曉志,1999(A),染整廢水之高級氧化處理,第二十四屆廢水處理技術研討會論文集,第437-442頁。
10. 洪崇軒、袁菁、林秉毅,1999(B),二氧化鈦光分解陰離子界面活性劑之研究,第六屆海峽兩岸環境保護研討會,第 607-612頁。
11. 殷慶瑞、王通、錢夢歸,1991,光聲光熱技術及應用,科學出版社,第一版,第117-121頁。
12. 郭文旭、林以慈、陳文卿、陳榮耀,1998,水車式光催化氧化系統處理農藥廢水之研究,第二十三屆廢水處理技術研討會論文集,第550-553頁。
13. 郭昭吟、駱尚廉、王南惠、高尚汶,1998,4-氯聯苯吸附現象及以高級氧化處理之研究,第二十三屆廢水處理技術研討會論文集,第649-656頁。
14. 郭昭吟、駱尚廉,1999,以UV/TiO2與Photo-Fenton程序處理水中含氯聯苯之研究,第二十四屆廢水處理技術研討會論文集。
15. 陳鴻烈、鄭慧玲,1994,以二氧化鈦進行光催化反應去除飲用水水源中有機污染之動力研究,中國環境工程學刊,第四卷,第二期,第77-87頁。
16. 莊英良,1996,以紫外線/二氧化鈦程序分別處理含六價鉻及亞素靈水溶液反應行為之研究,84 學年碩士論文,國立台灣工業技術學院化學工程技術研究所,台灣。
17. 莊連春、曾迪華,1997,光分解水中1-氯苯反應行為之研究,中國環境工程學刊,第七卷,第二期,第119-132頁。
18. 袁紹英,1998,多氯聯苯生物降解,第十八期環境檢驗所通訊雜誌,台灣,第2-1頁。
19. 喻家駿、陳玫君、林哲民、蔡崇峰,2000,反應性染料廢水光化學氧化處理之研究,第二十五屆廢水處理技術研討會論文集。
20. 董正釱、陳秋妏、陳秋雲,1995,利用光催化二氧化鈦/過氧化氫處理3-氯酚,第二十屆廢水處理技術研討會論文集,第693-699頁。
21. 葛應欽、張正二、劉尚修,1980,多氯連苯中毒患者之流行病學研究,台灣醫誌,79,第856頁。
22. 葛應欽、饒連財、許書刀等,1981,多氯聯苯在中毒患者之血中濃度,台灣醫誌,80,第774-779頁。
23. 曾亮鋒,2000,新式二氧化鈦觸媒膜的製備,碩士論文,國立中央大學化學研究所。
24. 曾明加、廖志祥、盧明俊,1998,以過氧化氫/紫外光程序去除2-4-二氯酚之研究, 第二十三屆廢水處理技術研討會論文集,第558-564頁。
25. 曾迪華、祝德杭、莊連春,1999,UV/TiO2系統處理氯苯類污染物質減毒效果之研究,第二十四屆廢水處理技術研討會論文集。
26. 張鎮南、陳欣茹,1998,不同pH情況下利用UV/TiO2分解丙烯睛之初步研究,工業污染防治,第65期,第44-55頁。
27. 張鎮南、蔡美唇、馬英石,2001,以UV/TiO2光化學氧化法處理含木質素廢水之研究,第二十六屆廢水處理技術研討會論文集,第1-95頁。
28. 楊英賢、廖志祥、盧明俊、蔡柏文,1998,以H2O2/ UV程序分解Acrylonitrile之可行性研究,第二十三屆廢水處理技術研討會論文集,第582-587頁。
29. 廖偉登、李炳楠、樓基中,1997,以紫外光/二氧化鈦程序處理甲基藍脫色處理之研究,第二十二屆廢水處理技術研討會論文集,第298-304頁。
30. 廖志祥、康世芳、曾明加,1999,EDTA經H2O2/ UV程序處理之礦化現象研究,第二十四屆廢水處理研討會論文集,第425-430頁。
31. 劉景生,1992,紅外物理,兵器工業出版社,第一版,第115-137頁。
32. 劉鎮宗、李元陞、1998,以雙氧水為催化劑的光化學氧化方法處理紅色染料廢水之研究,宜蘭農工學報,第十六期,第111-118頁。
33. 盧明俊、阮國棟、陳重男,1994,過氧化氫及亞鐵離子對二氯松之催化光氧化作用之影響,第十九屆廢水研討技術論文集,第466-472頁。
34. 謝永旭、王國華,1992,利用二氧化鈦懸浮膠體進行2-氯酚光催化分解反應之研究,興大工程學報,第三期,第103-109頁。
35. 衛生署疾病管制局,1995,台灣省油症多氯聯苯中毒事件綜合報告,台灣,第1-5頁。
36. Anderson. M. A., Gieselman M. J. and Xu Q., 1988, Titania and Alumina ceramic membranes, J. Membr. Sci., 39, pp.243-258.
37. Amalric L., Guillard C., and Pichat P., 1995,The photodegradation of 2,3-benzofuran and its intermediates, 2-coumaraone and salicylaldehyde, in TiO2 aqueous susoensions, Journal of Photochemistry and Photobiology A: Chemistry, 85, pp 257-262.
38. Arata K.,1990,Solid Superacids,Adv.Catal.,37,165.
39. Augugliaro,V., Plamisano L., Schiavello M. and Sclafani A., 1988, Photocatalytic degradation of nitrophenols in aqueous titanium dioxide dispersions,Appl. Catal., 69 , pp 323-340.
40. Barin I., 1989,Thermochemical Data of Pure Substances, Berlin.
41. Bedard D. L and Quemsen J., 1995, Microbial reductive dechlorination of polychlorinated biphenyls. In “Microbial Transformation and Degradation of Toxic Organic Chemicals”. Young L.Y. and Cernigilia C., Eds., pp127-216. Wiley-Liss Division, Joun Wiley and Sons, New York.
42. Beurskens, J. E. M., and Decker C. G. C., 1993 , Microbial Dechlorination of Hexachlorobenzene in a Sedimentation Area of the Rhine River, Biogeochemistry, 19, pp.61-81.
43. Bischoff L. B., Andersom A. M., 1995, Peptization process in the sol-gel preparation of porous anatase (TiO2) ,Chem. Master., 7, pp1772-1778.
44. Chang M. and Doong A., 1999, The photocatalytic degradation of chlorophenols in the presence of titanium dioxide and ferrous ions, 第二十四屆廢水處理技術研討會論文集,pp 347-354.
45. Chen D. and Ray K., 1998, phorodegradation kinetics of 4-nitrophenol in TiO2 suspension, Water Research, 32 (11) pp 3223-3234.
46. Chen P. H., Luo M. L., Wong C. K., and Chen, C. J., 1984, Polychlorinatedbiphenyls, dibenzofurans, and quaterphenyls in the toxic rice-bran oil and PCBs in theblood of patients with PCB poisoning in Taiwan. Prog. Cli. Biol.l Res., 137, pp133-45.
47. Chen T.F., Doong R.A., Lei W.G., 1998, Photocatalytic Degradation of Parathion in aqueous TiO2 dispersion: the effect of hydrogen peroxide and light intensity,Wat. Res., 37 (38) pp187-194.
48. Choudhry G. G., Foga M. and Webster G., 1990, Quantum yield of the direct phototransformation of 1,2,4,7,8-penta-and 1,2,3,4,7,8-hexachlorodibenzofuran in aqueous acetonitrile and their sunlight half-lives. Toxicl. Environ. Chem., 26, pp.181-195 .
49. Choudry G. G., 1989, Environmental Photochemistry of PCDDs. 2. Quantum Yields Phototranformation of the Direct Phototransformation of 1,2,3,7-Tetra-, 1,3,6,8-Tetra-, 1,2,3,4,6,7,8-Hepta-, and 1,2,3,4,6,7,8,9- Octachlorodibenzo
-p-dioxin in Aqueous Acetonitrile and Their Sunlight Half-Lives, Journal of Agriculture and Food Chemistry, 37(1), pp254-261.
50. Chu W., 1998, Photodechlorination mechanism of DDT in UV/surfactant system. Environ. Sci. Tech., 33, pp 421-425 .
51. Crittenden J. C., Liu J., Hand D. W., Perram D. L., and Marchand A.G., 1996,Wat. Environ. Res., 68, pp270.
52. Davis A.P and Huang C.P.,1990, The Removal of Substituted Phenols by Photocatalytic Oxidation Process with Cadmium Sulfide, Wat. Res., 24(5),pp 543.
53. Dexter R. N., and Pavlou S. P., 1978, Mar. Chem., 7, pp 67
54. Dibble D.A. and Raupp G.B., 1993, Fluidized-Bed Photocatalytic Oxidation of Trichloroethylene in Contaminated Airstreams, Environ. Sci.&Technol., 26, pp492-500.
55. Doong R., Chang W., 1997, Photoassisted titanium dioxide mediated degradation of organoposphorus pesticides by hydrogen peroxide, Journal of Photochemistry and Photobiology A: Chemistry, 107, pp 239- 244.
56. Erickson M., 1986, Analytical Chemistry of PCBs, Butter worth Publishers, Commercial Environmental and Biological Properties, pp5-53.
57. Fernandz A., Lassaletta G., Jimenez V. M., Justo A., Gonzalez-Elipe A. R.,Herrmann J.M.,Tahiri H., Ait-Ichou., 1995, Preparation Preparation and characterization of TiO2 photocatalysts supported on various rigid supports (glass, quartz and stainless steel). Comparative studies of photocatalytic activity in water purification. Applied Catalysis B: Environmental, 7 , pp79-63.
58. Gaynor. G. A., Gonzalez J. R., Davis M. R., Zallen R., 1997, Characterization of nanophase titania particles synthesized using in situ steric stabilization, J. M. Res., 12(7), pp1755-1765.
59. Grishchenko L. I., Medvedkova N.G., Nazarov N. V. and Frolov Y. U., 1992, Synthesis of titania hydrosol on the basis of the hydrolysis of titanium assisted by a phase transformation , Nature 358 ,pp48-51
60. Haarstrick A., Kut M., and Heinzle E., 1996, TiO2-Assisted degradation of environmentally relevant organic compounds in wastewater using a novel fluidized bed photoreactor, Environmental Science and Technology, pp 817-827.
61. Hague C. D. and Mayo J. M., 1994, Controlling crystallinity during processing of nanocrystalline titania, J. Am. Ceram. Soc., 77, pp.1957-1960.
62. Hama M.K.K. P. and Maithreepala R.A.,1997, Photodegradation of 3,4-dichlopropionamide in aqueous TiO2 suspensions, Journal of Photochemistry and Photobiology A:Chemistry 102, pp273-277.
63. Hawari J., Demeter A., Greer C. and Samson R., 1991, Acetone-induced photodechlorination of Aroclor 1254 in alkaline 2-propanol:probing the mechanism by thermolysis in the presence of di-t-buty1 peroxicde. Chemosphere., 22, pp.1161-1174 .
64. Hawari J., Demeter A. and Samson R., 1992, Sensitized Photolysis of Polychlorobiphenyls in Alkaline 2-Propanol : Dechlorination of Aroclor 1254 in Soil Samples by Solar Radiation, Environmental Science and Technology, 26, pp2022-2027.
65. Heuer H., 1987, Transformation Toughening in ZrO2-Containing Ceramics, J.Am.Ceram.Soc.,70, pp689.
66. Hidaka H., Nagaoka H., Nohara K., Shimura T., Horikoshi S., Zhao J.,andn Serpone N., 1996,nAmechanistic study of the photoelectrochemical oxidation of organcompound on a TiO2/TCO particu;ate film electrode assembly, Journal of Photochemistry and Photobiology A: Chemistry, 98, pp 73-78.
67. Hidaka H., Shimura T., Ajisaka K., Horikoshi S., Zhao J., and Serpone N., 1997, Photoelectrochenical decomposition of amino acids on a TiO2/OTE particulate film electrode, Journal of Photochemistry and Photobiology A: Chemistry, 109, pp 165- 170.
68. Hino M. and Arata K.,1980, Synthesis of solid Superacide Catalyst with Acid Strength of Ho<-16.04, J.Chem.Commun. pp851.
69. Hislop K.A.and Bolton J.R., 1999, The photochemical generation of hydroxyl radicals in the UV-vis/ferrioxalate/H2O2 system. Environ. Sci. Technol., 33, pp.3119-3126.
70. Hoffmann M. R., Martin S. T. and Choi W.,1995, Environmental applications of semiconductor photocatalysis, Chem. Rev., 95 , pp69-96.
71. Hung C.H. and Marinas B. J, 1997, Role of Water in the Photocatalytic Degradation of Trichloroethylene Vapor on TiO2 Films, Environ. Sci. Technol., 31(5), pp.1440-1445.
72. Hussain A.E.and Nick S.,1988, Kinetic Studies in Heterogeneous Photocatalysis,1.Photocatalytic Degradation of Chlorinated Phenols in Aerated Aqueous Solutions over TiO2 Suppoerted on Glass Matrix.,J. Phys.Chem.,92,pp 5726-5731.
73. Jacoby W. A., Blake D. M., Pennell J. A., Boulter J. E., Vargo L. M., George M.C. and Dolberg S. K., 1996, Heterogeneous photocatalysis for control of volatile organic compounds in indoor, Air, J. Air & Waste Manage Assoc.,46, pp891.
74. Kamiya M., 1992, Photodegradation Mechanism of 2,3,7,8,-Tetrachloro-dibenzo-p-dioxin as Studied by the PM3-MNDO Method, Chemosphere, 16(3), pp 291-307.
75. Kang G., Han E. and Kim J., 1999, Enhanced photodecomposition of 4-chlorophenol in aqueous solution by deposition of CdS on TiO2, Journal of Photochemistry and Photobiology A: Chemistry, 125, pp 119-125.
76. Kesselman T. J. M. and Hug S.J., 1999, Photodegradation of 4,4’-bis(2-sulfostyryl)biphenyl (DSBP) on metal oxides followed by in situ ATR-FTIR spectroscopy. Environ. Sci. Technol., 33, pp 3171-3176 .
77. Kiriakidou F., Kondarides D. I. and Verykios X. E., 1999, The Effect of Operational Parameters and TiO2-doping on the photocatalytic Degradation of Azo-dyes, J. Catal. Today , 54, pp 119-130.
78. Kiukkola K. and Wagner C., 1957, Galvanic Cells for the Determination of the Standard Molar Free Energy of Formation of Metal Halides,Oxides, and Sulfides at Elevated Temperatures, J.Electrochem.Soc.,104, pp.308.
79. Kuipers B. and Cullen W. R., 1999 , Reductive Dechlorination of Nonachorobiphenyls and Selected Octachlorobiphenyls by Microbial Enrichment Cultures, Environmental Science and Technology , 33, pp.3579-3585.
80. Kumar K-N. P., Kumar J. and Keizer K., 1994, Effect of peptization on densification and phase-transformmation behavior of sol-gel-derived nanostructured titania, J. Am. Cream. Soc., 77, pp 1396-1400.
81. Lawton A., Robertson J. and Cornish A., 1999, Detoxification of microcystins (cyanobacterial hepatotoxins) using TiO2 photocatalytic oxidation , Enviromental Science and Technology, 33, pp 771-775.
82. Lepine F. L. and Masse R.,1990, Degradation Pathway of PCB upon Gamma Irradiation, Environ Health Perspect., 89, pp183-187.
83. Lepine F. L., Milot S. M., Vincent N. M. and Grave D., 1991, Photochemistry of higher chlorinated PCBs in cyclohexane. J.Agri. Food. Chem., 39, pp.2053-2056.
84. Lin Y. J., Gupta G. and Baker J.,1995, Photodegradtion of polychlorinated biphenyl congenrs using simulated sunlight and diethylamine. Chemosphere, 31(5), pp 3323-3344.
85. Lin Y. J., Gupta G. and Baker J., 1996, Photodegradation of Aroclor 1254 using simulated sunlight and various sensitizers. Bulletin of Environmental contamination and Toxicology., 25, pp566-570.
86. Lin Y. J., Lee A., Teng L. S. and Lin H. T., 2002, Effect of Experiment Factors on Nitrobenzaldehyde Photoisomerization , Chemosphere, 48,pp 1-8.
87. Ma Y. and Yao N., 1998, Photodrgradation of Rhodamine B catalyzed by TiO2 thin films, Journal of Photochemistry and Photobiology A: Chemistry, 116, pp 167-170.
88. Marci G., Sclafani A., Augualiaro V., Palmisano L., and Schiavello M., 1995, Influence of some aromatic and aliphatic compounds on the rate pf photodrgration of phenol in aqueous susoensions of TiO2, Journal of Photochemistry and Photobiology A: Chemistry, 89, pp 69- 74.
89. Matthews R.,1984 , Hydroxylation Reactions Induced by Near-Ultraviolet Photolysis of Aqueous Titanium Dioxide Suspensions, J. Chem. Soc. Faraday Trans., 80 (2), pp457-471.
90. Matthews R. W., 1987, Solar-Electric Water Purification Using Photocatalytic Oxidation with TiO2 as Astationary Phase,Wat. Res., 25, pp405-413.
91. Miary B., Golhan O., 1996, A Preliminary Investigation on the Photocatalytic Degradation of a Model Humic Acid, Water Science Techlogy, 33(6), pp 189-194.
92. Miao X. S., Chu S. G., and Xu X.B., 1999, Degradation pathways of PCBs upon UV Irradation in Hexane, Chemosphere, 39, pp.1639-1650.
93. Modestov D. and Lev O., 1998, Photocatalytic oxidation of 2,4 -dichlorophenicyacetic acid with titania photocatalyst. Comparison of supported and suspended TiO2, Journal of Photochemistry and Photobiology A:Chemistry, 112, pp 261- 270.
94. Moctezuma E., Layva E., Monreal E., Villegas N and Infante D.,1999, Photocatalytic Degradation of the Herbicide “PARAQUAT”., Chemosphere, 39(3), pp 511-517.
95. Mullin M. D., Pochini C. M., McCrindle S., Romkes, Safe M. S., and Safe L. M., 1984, High-resolution PCB Analysis: Synthesis and Chromatographic Properties of All 209 PCB Congeners, Environmental Science and Technology, 18(6), pp 468-476.
96. Nam H. D., Lee, B. H., Kim S.J., Jung C. H., Lee J. H. and Park S.,1998, Preparation of Ultrafine Crystalline TiO2 Powders from Aqueous TiCl4 Solution by Precipitation, Jpn. J. Appl. Phys., 37, pp. 4603-4608.
97. Nishiwaki T., 1981, Attempt to Establish a Photodecomposition Process of PCBs, Yuki Gosei Kagaku Kyokaishi 39, pp.228-237.
98. Nogueira R. F. P. and Jardim W. F.,1996, TiO2-Fixed-Bed Reactor for Water Decontamination Using Solar Light, Sol. Energy., 56(5), pp 471-477.
99. Obee T. N. and Brown R.T., 1995, TiO2 Photocatalysis for Indoor Air Application :Effects of Humidity and Trace Contaminant Levels on the Oxidation Rates of Formaldehyde, Toluene and 1,3-Butadiene, Environ.Sci.&Technol.,29, pp1223.
100. Ollis. D.F., Pelizzetti E. and Serpons N.,1991, Destruction of Water Contaminants, Environ.Sci.Technol.,25, pp1523-1529.
101. Okamoto K., Yasunori Y., Hirok T., Masashi T. and Akira I.,1985 , Heterogeneous Photocatalytic Decomposition of Phenol over TiO2 Powder , Bull.Chem.Soc.Jap. , 58, pp 2015-2022.
102. O''Shea E., Beightol S., Garcia I., Aguilar M., Kalen V. and Cooper J., 1997, Photocatalytic decomposition of organophosohonates in irradiated TiO2 suspensions, Journal of Photochemistry and Photobiology A: Chemistry, 107, pp 221-226.
103. Park H. K., Kim D. K. and Kim C. H.,1997, Effect of Solvent on Titania Particle Formation and Morphology in Thermal Hydrolysis of TiCl4, J Am. Ceram. Soc., 80, pp 743-749.
104. Parra S., Olivero J. and Pulgarin C., 2002, Relationships between physicochemical properties and photoreactivity of four biorecalcitrant phenylurea herbicides in aqueous TiO2 suspension, Applied Catalysis B: Environmental ,36, pp75-85.
105. Pathirana K., Maithreepala A., 1997, Photodegradation of
3, 4-dicholoropropionamide in aqueous TiO2 Suspensions, Journal of Photochemistry and Photobiology A: Chemistry, 102, pp 273- 277.
106. Qu P., Zhao J., Shen T. and Hidaka H., 1998, TiO2-assisted photodegradation of dyes: A study of to competitive primary processes in the degradation of RB in an aqueous TiO2 colloidal solution, Journal of Molecular Catlysis A: Chemical, 129, pp 257-268.
107. Ranjit T., Joselevich E. and Willner I., 1996, Enhanced photocatalytic degradation of π-donor compounds by N, N''-dialky-4, 4''-bipyridinium-modified TiO2 particles, Journal of Photochemistry and Photobiology A: Chemistry, 99, pp 185-189.
108. Sánchez L., Peral J. and Domènech X., 1997, Photocatalyzed destruction of aniline in UV-illumunated aqueous TiO2 susoensions, Electrochemical Analytics, 42(12), pp 1877-1882.
109. Safe S., Safe l. and Mullin M., 1987, Environmental Toxin Series 1. InEnvironmental Toxin Series 1:polychlorinated biphenyls(PCBs):Mammalian andEnvironmental Toxicology (New York), Spring-Verlag Berlin Heidelberg.
110. Sato G., Arima Y., Tanaka H. and Hiraoka S.,1995 , United Jingdom Partent 5,403,513.
111. Scl afani A. and Herrmann J. M.,1996, Comparison of the Photoelectronic and Photocatalytic Activities of Various Anatase and Rutile forms of Titanit in Pure Liquid Organic Phases and in Aqueous Solution .,J.of Physical Chemistry,100(32), pp 13655-13661.
112. Scolan E. and Sanchez C., 1998 , Synthesis and characterization of surface protected nanorystalline particles of titania , Mater. Res. Soc. Symp. Proc., 519, pp 329-335.
113. Serpone N., Lawless D., Disdier J. and Herrmann J. D., 1994, Spectroscopic, Photoconductivity, and Photocatalytic Studies ofTiO2 Colloids:Naked and with the Lattice Doped with Cr3+, Fe3+, andV5+ Cations’, Langmuir., 10, pp643-652.
114. Shelton D. R., Tiedje J. M., 1984, General Method for Determining Anaerobic Biodegradation Potential, Environmental Microbiol , 47, pp.850-857.
115. Shimura M., Koana T., Fukuda M. and Kimbara K., 1996 , Complete Degradation of Polychlorinated Biphenyls by a Combination of Ultraviolet and Biological Treatments , Fermentation and Bioengineering, 81(6), pp573-576.
116. Spacek W., Bauer R. and Heisler G., 1995, Heterogeneous and homogeneous wastewater treatment-comparison betweem photodegradation with TiO2 and the photo-frnton reaction, Chemophere, 30(3), pp 477-484.
117. Stumm W., 1990, Aquatic Chemical Kinetic, John Wiley & Sons Inc. New York, pp 415-416.
118. Subba R. E. C., Maiti H. S. and Srivastava K. K.,1974, Phy. Status Solidi, 21, pp.9-12.
119. Sun S. and Inskeep W. P., 1995, Sorption of Nonionic Organic Compounds in Soil-Water Systems Containing a Micelle-Forming Surfactant,Environ. Sci. Technol., 29, pp 903-913.
120. Torimoto T., Ito S., Kuwabata S. and Yoneyama H., 1996, Effects of adsorbents used as supports for titanium dioxide loading on photocatalytic degradation of propyazmide. Environ. Sci. Tech., 30, pp1275-1281.
121. Texier I., Ouazzani J., Dealer J., and Giannotti C., 1999, Study of mechanisms of photodegration of atrazine in the presence of two photoxatalysts: TiO2 and Na4W10O32, Tetrahedron, 55, pp 3401-3412.
122. Uchida H., Katoh S., and Watanabe M., 1998, Photocatalytic degradation of trichlorobenzene using immobilized TiO2 films containing poly (tetrafluoroethylene) and platinum metal catalyst, Electrochimica Acta, 43(14-15) pp 2111-2116.
123. US EPA , 1999, PCBs Home page. US EPA Office of Pollution Prevention and Toxics, pp 5.
124. Waki K., Wang L., Nohara K. and Hidaka H., 1995, Photocatalyzed mineralization of nitrogen-containing compounds at TiO2/H2O interfaces, Journal of Molecular Catlysis A: Chemical, 95, pp 53-59.
125. Wang Y., Liu Y. and Shen T., 1997, The photocatalytic oxidation of phenylmercaptotetrazole in TiO2 dispersions, Journal of Photochemistry and Photobiology A: Chemistry, 109, pp 65- 70.
126. Wiegel J. and Wu Q. 2000, Microbial reductive dehalogenation of polychlorinated biphenyls. FEMS Microbiology Ecology., 32, pp1-15.
127. Wiederhoft G ., Butje K., Barenthien P. J., Bodiger M. and Alberts H., 1998, Nanodisperse titanium dioxide, process for the production thereof and use thereof , United Jingdom Partent, pp 5,840,111.
128. Woodhead L. J, 1975, Improvements in or relating to titanium dioxide gels and sols , United Kindom Partent , pp1,412,937.
129. Woodyard J. P., 1990, PCB Detoxification Technologies: A Critical Assessment, Environ. Prog., 9(2), pp131-135.
130. Wong W. K. and Malati M. A., 1986, Doped TiO2 for Solar Energy Applications, Sol. Energy., 36( 2) , pp 163-168.
131. Xiu S. M., Shao G. C., Xiao B. X.,1999, Degradation Pathways of PCBs opon UV irradlation in Hexane, Chemosphere ,39 (10), pp1639-1650.
132. Ying C. Z., Liu T. and Ding C., 1999, Structural characterization of TiO2 ultrafine particles,J. Mater. Res., 14(2), pp 442-446.
133. Yoldas E.B., 1986, Hydrolysis of titanium alkoxide and effects of hydrolytic polycondensation parameters, J.Mater. Sci., 21, pp 1087-1092.
134. Zepp R.,1977 , Rate of Direct Photolysis in Aquatic Environment, Environmental Science and Technology ,6(4), pp359-366.
135. Zhang F., Zhao J., Zang L., Shen T., Hidaka H., Pelizzetti E. and Serpone N., 1997, Photoassisted degradation of dye pollutants in aqueous TiO2 dispersions under irradiation by visible light, Journal of Molecular Catalysis A: Chemical, 120, pp 173-178.
136. Zhang Q., Gao L. and Guo J., 2000, Effects of Calcinations on the Photocatalytic Properties of Nanosized TiO2 Powders Prepared by TiCl4 Hydrolysis, Appl. Catal. B: Envi ., 26, pp 207-215.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top