跳到主要內容

臺灣博碩士論文加值系統

(3.238.204.167) 您好!臺灣時間:2022/08/13 11:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:廖淑秋
研究生(外文):Shu-Chiu Liao
論文名稱:以堆肥馴化五氯酚分解菌群降解高濃度五氯酚之研究
論文名稱(外文):Degradation of Pentachlorophenol with Compost Induced PCP Degradation Microbial Community
指導教授:邱瑞宇邱瑞宇引用關係
指導教授(外文):Ruey-Yeu Chiou
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:環境工程與科學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:107
中文關鍵詞:五氯酚五氯酚分解菌群樹皮堆肥豬糞堆肥生物復育五氯酚分解反應常數平均攝氧率比活性
外文關鍵詞:pentachlorophenolPCP degradation microbial communitybark composthog waste compostbioremediationPCP degradation reaction kinetic constantrelative activity of average oxygen uptake rate
相關次數:
  • 被引用被引用:12
  • 點閱點閱:435
  • 評分評分:
  • 下載下載:82
  • 收藏至我的研究室書目清單書目收藏:4
本研究採集受五氯酚污染嚴重(265μg/g)地區之污染土壤,添加腐熟堆肥,以五氯酚強化馴養,結合污染場址現地菌及腐熟堆肥中多樣化的菌群為對策,期能馴化出具本土性可分解高濃度(50~500ppm)五氯酚之菌群。馴化方式採三種處理,分別為污染土壤(Pile I)及污染土壤添加樹皮(Pile II)或豬糞堆肥(Pile III)以連續供應含五氯酚營養鹽方式馴化培養五氯酚分解菌群,評估此馴化出之五氯酚分解菌群對含五氯酚土壤及液體的分解能力,目的在尋找擁有高礦化力的五氯酚菌群以為五氯酚污染土壤生物復育方法之參考。
取經150天馴化的堆肥土進行含200μg/g五氯酚土壤降解實驗得到,Pile I、Pile II及Pile III可在80天中分別降解五氯酚初始值的47%、77%及71%。其中以Pile II樹皮堆肥土的降解效果最好,符合一階反應動力方程式,其相關係數(r2)為0.99,有最大的分解常數(k)為2.67×10-2(1/day)與最短的半衰期(t1/2)為26天。
液體降解實驗中顯示馴化菌群可以五氯酚做為唯一碳源及能源,而Pile II馴化菌群在五氯酚濃度50~500μg/mL之間比Pile I及Pile III馴化菌群有更佳的分解效率,其馴化菌群在五氯酚濃度50~300μg/mL,7天的降解率大於50%, Pile I、Pile II、Pile III馴化菌群的五氯酚分解符合一階反應式,濃度越小,k越大,t1/2越小,即分解越快,其中以Pile II馴化菌群在五氯酚濃度50μg/mL時的分解k值最大為0.84(1/day),半衰期20小時,在五氯酚濃度500μg/mL時,Pile III的k值最小為0.015(1/day),半衰期46天。
在液體降解攝氧率活性實驗中以呼吸儀測定攝氧率,Pile I、Pile II、Pile III的馴化菌群所加入的五氯酚濃度越高,攝氧遲滯期越長。Pile I馴化菌群在五氯酚濃度50~500μg/mL中間,50~200μg/mL遲滯期較短為5小時;Pile III馴化菌群則在五氯酚濃度50,100μg/mL時,有最短的遲滯期為5小時;而Pile II馴化菌群在五氯酚濃度50~300μg/mL時,沒有遲滯期,且Pile II馴化菌群在五氯酚濃度50μg/mL的平均攝氧,第20小時有最大攝氧率0.019(O2 mg/L/hr)。以168小時的五氯酚平均攝氧率和葡萄糖基本呼吸平均攝氧率的比值為比活性進行探討,Pile I馴化菌群受到抑制的五氯酚濃度為200~500μg/mL,比值為0.17~0.71。Pile III馴化菌群受到抑制的濃度為200~500μg/mL,比值為0.04~0.89,除了300μg/mL,比值為2.38。Pile II馴化菌群在五氯酚濃度50~500μg/mL之間皆未受到抑制的現象,其比值皆大於1,為1.77~4.11。顯示Pile II馴化菌群比Pile I及Pile III馴化菌群更能適應大於200μg/mL五氯酚濃度的環境。
由土壤及液體的降解實驗結果,以樹皮堆肥添加於污染土壤馴化的菌群可以有效的分解高濃度50~500ppm五氯酚,且並無更具毒性如氯甲醚類的物質產生,可提供為本土高五氯酚污染場址生物復育的參考菌源。
Pentachlorophenol(PCP) is a widely used wood treatment agent and biocide. The toxic compound have resulted in extensive pollution of water and soil. Bioremediation is recognized as an economically viable method. The aim of the research is to acclimate Pentachlorophenol degradation microbial community for treatment of high concentration PCP (50~500ppm) contaminated soil of Taiwan. The strategy of the PCP degradation community acclimation is to combinate indigenous microorganism in serious PCP contaminated soil(265ppm) with diversity microorganism in mature compost. There are three treatment, contaminated-site soil alone(Pile I), bark compost with contaminated-site soil(ratio 2:1 w/w, Pile II), hog waste with contaminated-site soil(ratio 2:1 w/w, Pile III). We induced the PCP degradation microbial community by adding 6.12510-2g PCP into the average 20kg Pile I, II and III every week for 90 days and aeration for another 60 days without PCP added. The test will evaluate the PCP degradating ability of PCP degradation microbial community from Pile I, II and III.
The PCP degradation ratio from initial PCP concentration is 47%, 77% and 71% when we add 1 parts Pile I or II or III into 1 parts preparation soil with 200ppm PCP. The degradation curve is fitted to first-order-kinetic reaction. There show good degradation ability. The maximum reaction constant(k) 2.6710-2(day-1) and the least half life(t1/2) 26 days is from Pile II the bark compost soil.
We transfer the compost soil of Pile I, II, III to liquid culture and enrich the PCP degradation microbial community with 200ppm PCP-mineral solt broth for 6 times. We use the enrich culture as the seed. It showed this culture used PCP as it’s sole source of carbon and energy. Pile II have the best degradation efficiency than Pile I and III at 50 to 500ppm of PCP. And during 50~300ppm of PCP decrease is larger than 50 % in seven days. The degradation reaction was also fitted to first-order reaction equation and the r2 were higher than 0.91. There is relationship between PCP concentration and reaction constant, the smaller PCP concentration, the larger the k and the smaller the t1/2. It has the largest k (0.84 day-1), the least t1/2 (20hr) in 50ppm PCP with enriched culture from Pile II the bark compost soil. It has the smallest k (0.015 day-1), the largest t1/2 (46 days) in 500ppm PCP with enriched culture from Pile III the hog waste compost soil.
We determined the oxygen uptake rate by respirometer in 500ml PCP-mineral salt broth containing 50 to 500ppm PCP and seeded with enriched culture from Pile I, II and III. The higher the concentration of PCP, the longer the lag phase of Pile I, II and III. The seeded culture from Pile I, between 50 and 200ppm PCP broth, oxygen uptake has the shortest lag phase, it’s only 5 hr. The seeded culture from Pile III, between 50 and 100ppm PCP broth, oxygen uptake has the shortest lag phase, it’s only 5 hr. The seeded culture from Pile II, between 50 and 300ppm PCP broth, oxygen uptake doesn’t have lag phase, and in 50ppm, it has the largest average oxygen uptake rate (0.019 O2-mg/L/hr) at the 20th hr. The relative activity is the average oxygen uptake rate ratio of PCP and glucose degradation among 168 hrs. It is an indicator to explain the PCP degradation ability of the three culture from Pile I, II and III. At PCP concentration from 200 to 500ppm of Pile I, the relative activity value are smaller than 1, it means the PCP degradation was inhibited. At PCP concentration from 200 to 500ppm, except 300ppm, Pile III was inhibited also. At PCP concentration from 50 to 500ppm, Pile II was not inhibited, the ratio exceeds far more than 1. It is observed that Pile II can acclimate better than Pile I and III when the PCP concentration was greater than 200ppm.
It is evident that the acclimation of PCP degradation microbial community from Pile II the bark compost soil can degradate high concentration PCP 200ppm in soil and 50 to 500ppm in liquid culture, and there is no harmful product such as chloroanisoles be found. It could be faster to fermentate the PCP contaminated soil when inoculated with PCP degradation microbial community. The acclimation PCP degradation microbial community from compost-contaminated soil could be the inocula for ex-situ bioremediation of high concentration PCP contaminated soil in the future.
總目錄
頁次
中文摘要 Ⅰ
英文摘要 IV
誌謝 VII
總目錄 VIII
表目錄 XII
圖目錄 XIV
第一章 前言 1
1.1研究緣起及目的 1
1.2研究內容 3
第二章 文獻回顧 5
2.1環境中氯酚類化合物之概述 5
2.1.1氯酚類化合物之污染 5
2.1.2氯酚類化合物之主要用途 7
2.1.3氯酚類化合物之物化特性 8
2.1.4五氯酚之生物毒性 10
2.1.5五氯酚的管制標準 12
2.2生物復育 15
2.2.1堆肥法 17
2.2.2廢棄物回收再利用 18
2.3氯酚的生物分解作用 20
2.4五氯酚之分解研究 23
第三章 實驗材料與方法 28
3.1實驗材料 28
3.1.1材料 28
3.1.2培養基 30
3.2五氯酚分解菌群馴化實驗 33
3.3回收率實驗 35
3.3.1土壤萃取回收率實驗 35
3.3.2液體萃取回收率實驗 35
3.4土壤降解實驗 36
3.5液體降解實驗 37
3.6液體降解攝氧率活性實驗 37
3.7分析方法 38
3.7.1 pH值測定 38
3.7.2含水量 38
3.7.3有機質及灰分含量測定 39
3.7.4保水力 39
3.7.5 PCP分解菌菌數測定 39
3.7.6 TVS及VSS分析 40
3.7.7液體實驗總菌數測定 40
3.7.8五氯酚殘量分析 41
3.7.8.1氣相層析儀/火焰離子偵測器 41
3.7.8.2分光光度計 42
3.7.9攝氧率分析 43
3.7.10五氯酚降解副產物分析 47
第四章 結果與討論 48
4.1土壤及堆肥基本性質分析結果 48
4.2萃取回收率 53
4.2.1土壤中五氯酚萃取回收效率 53
4.2.2液體中五氯酚萃取回收效率 55
4.3土壤降解實驗結果 57
4.3.1五氯酚在土壤中的降解情形 57
4.3.2五氯酚在土壤中之一階反應式 60
4.3.3五氯酚濃度與分解菌之關係 62
4.4液體降解實驗結果 64
4.4.1五氯酚在液體中降解濃度變化 64
4.4.2菌數密度 70
4.4.3液體降解實驗pH值變化 73
4.5液體降解攝氧率活性實驗 75
4.5.1攝氧率 75
4.5.2比活性 81
4.5.3攝氧率活性實驗TVS及VSS探討 84
4.5.4活性實驗pH值之變化 85
4.5.5攝氧率活性實驗五氯酚降解濃度探討 86
4.6五氯酚降解副產物分析 88
第五章 結論 89
參考文獻 92
附錄
作著簡介
王一雄,1997,土壤環境污染與農藥,國立編譯館,台北,頁155-200。
行政院環保署環檢所,1994,環境檢測方法彙編,台北。
李秀、賴滋漢 編著,1992,食品分析與檢驗,頁247-248。
阮國棟、邵信,1990,受污染土壤清理復育技術,第二屆土壤污染防治研討會論文集,頁355-374。
卓英仁,1990,我國土壤污染現況分析及防治政策之研究,環保通訊雜誌社,台北。
林畢修平、張裕釧、蔡慧穎,2000,環境中含氯有機污染源生物復育之可行性介紹,微生物與環境荷爾蒙研討會論文集,頁66-84。
邱瑞宇,1996,以腐植化程度及鑑別臭土香味geosmin的產生做為堆肥腐熟度參數之研究,博士論文,國立台灣大學農化所,台北。
袁紹英、江文仁、潘子明、張碧芬,1991,氯酚化合物在環境中之消長化學,中國化學會誌,第49卷,第4期,頁347-375。
郭加恩,1995,氯酚類在厭氧河口底泥之生物分解,碩士論文,國立台灣海洋大學海洋生物研究所,基隆。
郭烈銘,1990,有害物質滲漏地下水層污染調查研究報告,行政院環保署,頁35-36。
陳致谷、張添晉,1993,土壤污染復育工程技術,工業污染防治,第45期,頁43-65。
陳致谷、張添晉,1995,土壤污染生物復育技術之應用及展望,工業污染防治,第53期,頁113-138。
陳龍吉、徐振盛,1992,廢棄物處置場污染補救措施,淑馨出版社,台北。
張碧芬、鄭興、袁紹英、王一雄,1993,三種氯酚化合物在環境中之消失及對地下水污染之評估,中國環境工程學刊,第3卷,第3期,頁209-215。
張碧芬,1996,氯酚化合物在土壤中生物分解之研究,行政院國家科學委員會專題研究計畫成果報告,計畫編號NSC84-2621-P031-001,行政院國科會科資中心,台北。
葉玉雯,1999,比較索氏萃取法與超臨界萃取法對含萘及五氯酚土壤萃取之研究,碩士論文,中興大學環境工程研究所,台中。
趙聖傑,1994,受芳香烴類污染的地下水現地生物復育之研究,碩士論文,中興大學環境工程研究所,台中。
樊邦堂,1994,環境工程化學,科技圖書股份有限公司,再版,台北。
蔡宜錚、黃濂純、鄒家蘭,1999,呼吸儀(Arthur儀)應用於染料廢液對曝氣槽微生物抑制性研究,工程實務技術研討會。
盧至人、葉玉雯、張峻嘉、蘇世昌、邱明良,1998,地下水及土壤污染防治策略,中台灣環境保護研討會論文集,頁138-142。
謝立生、黃建華 譯,1988,環境工程化學,乾泰圖書公司,台北。
Alexander, M., 1994, in “Biodegradation and Bioremediation” Academic Press, Inc. Sandiego, California, U.S.A. p.210.
Alleman, B. C., B. E. Logan, and R. L. Gilbertson, 1992, Toxicity of pentachlorophenol to six species of white rot fungi as a function of chemical does. Appl. Environ. Microbiol., 58:4048-4050.
Apajalahti, J. H. and M. S. Salkinoja-Salonen, 1984, Absorption of pentachlorophenol(PCP) by bark chips and its role in microbial PCP degradation. Microb. Ecol., 10:359-367.
Apajalahti, J. H., A., and M. S. Salkinoja-Salonen, 1986, Degradation of polychlorinated phenols by Rhodococcus chlorophenolicus. Appl. Microbiol. Biotechnol., 25:62-67.
Banerni, S. K., M. Wei, and R. K. Bajpai, 1993, Pentachlorophenol interactions with soil. Water Air Soil Pollut., 69:149-163.
Banerji, S. K. and P. K. Bajpai, 1994, Cometabolism of pentachlorophenol by microbial species. J. Hazardous Materials, 39:19-31.
Beltran, P., P. L. Beltram, P. Carniti, and D. Guardione, 1988, Inhibiting Action of Chlorophenols on Biodegradation of Phenol and Its Correlation with structural Properties of Inhibitors. Biotechnology and Bioenginerring, 31(8):821.
Bevenue, A., J. N. Ogata, and J. W. Hylin, 1972, Organochlorine pesticides in rain water. Oahu, Hawaii. Bull., Environ. Contam. Toxicol., 8:238-242.
Bollag, J.-M., 1992, Decontaminating soil with enzymes. Environ. Sci. Technol., 26:1876-1881.
Borthwick, P. W. and S. C. Schimmel, 1978, Toxicity of pentachlorophenol and related compounds to earlylife stages of selected estuarine animals. 141-146, In Ranga Rao K (Ed.), Pentachlorophenol, chemistry, pharmacology and environ- mental toxicology. Plenum Press, New York.
Buhler, D. R., M. E. Rasmusson, and H. S. Nakave, 1973, Occurrence of hexachlorophene and pentachlorophenol in sewage and water. Environ. Sci. Technol. 7:929-934.
Compeau, G. C., W. D. Mahaffey, and L. Patras., 1991, Full-scale bioremediation of contaminated soil and water. p.91-109. In G. Sayler, R. Fox, and J. W. Blackburn(ed.), Environmental biotechnology for waste treatment: environmental science research, vol. 41. Plenum Press, New York.
Crosby, D. G., 1981, Environmental chemistry of pentachloro- phenol. Pure & Appl. Chem., 53:1051-1080.
Cserjesi, A. J. and E. L. Johnson, 1972, Methylation of pentachlorophenol by Trichoderma virgatum. Can. J. Microbiol., 18:45-49.
Davis, A., J. Campbell, C. Gilbert, M. V. Ruby, M. Bennett, and S. Tobin, 1994, Attenuation and biodegradation of chlorophenols in groundwater at a former wood treating facility. Groundwater, 32:248-257.
Edgehill, R. U. and R. K. Finn, 1982, Isolation characterization and growth kinetics of bacteria metabolizing pentachlorophenol. Eur. J. Appl. Microbiol. Biotechnol., 16:179-184.
Etzel, J. E. and E. J. Kirsch, 1975, Biological treatment of contrived and industrial wastewater containing pentachlorophenol. Dev. Ind. Microbiol., 16:287-295.
Fenster, D. E., 1990, Hazardous waste laws, regulations, and taxes for the U.S. petroleum refining industry, PennWell Publishing Co., Tulsa, Okla. p.138-146.
Fisher, P. R., J. Appleton, and J. M. Pemberton, 1978, Isolation and characterization of the pesticide-degrading plasmid pJP1 from Alcaligenes paratoxus. J. Bacteriol., 135:798-804.
Freeman, H. M., 1989, Standard handbook of hazardous waste treatment and disposal. McGraw-Hill Book Co., New York.
Glass, D. J. et al., 1995a, Growing international markets and opportunities in bioremediation: Part I. Genetic Engineering News, October 15:6-7.
Glass, D. J. et al., 1995b, Growing international markets, trends, and technologies in bioremediation: Part II. Genetic Engineering News, November 1:38-39.
Goerlitz, D. F., D. E. Troutman, E. M. Godsy, and B. J. Franks, 1985, Migration of wood-preserving chemicals in contaminated groundwater in a sand aquifer at Pensacola. Florida. Environ. Sci., 19:955-961.
Gobas, F. A., E. J. McNeil, L. Lovett-Doust, and G. D. Haffner, 1991, Bioconcentration of chlorinated aromatic hydrocarbons in aquatic macrophytes. Environ. Sci. Technol., 25:924-929.
Häggblom, M. M., J. H. Apajalahti, and M. S. Salkinoja-Salonen, 1988, O-methylation of chlorinated para-hydroquinones by Rhodococcus chlorophenolicus. Appl. Environ. Microbiol., 54:1818-1824.
Häggblom, M. M., L. J. Nohynek, and M. S. Salkinoja-Salonen, 1988, Degradation and O-methylation of chlorinated phenolic compounds by Rhodococcus and Mycobacterium strains. Appl. Environ. Microbiol., 54:3043-3052.
Häggblom, M. M., D. Janke, P. M. J. Middeldorp, and M. S. Salkinoja-Salonen, 1989, O-methylation of chlorinated phenols in the genus Rhodococcus. Arch. Microbiol., 152:6-9.
Häggblom, M. M. and R. Valo, 1995, Bioremediation of chlorophenolic wastes. p.389-434. In L. Young(ed.), Microbiological transformation and degradation of toxic organic chemicals. John Wiley & Sons, Inc., New York.
Häggblom, M. M., 1998, Reductive Dechlorination of Halogenated Phenols by a Sulfate-reducing Consortium. FEMS Microbiology Ecology, 26:35-41.
Haigler, B. E., C. A. Pettigrew, and J. C. Spain, 1992, Biodagradation of mixtures of substituted benzenes by Pseudomonas sp. Strain JS150. Appl. Environ. Microbiol., 58:2237-2244.
Hanson, R. D. and E. Topp, 1990, Degradation of pentachlorophenol by a Flavobacterium species grown in continuous culture under various nutrient limitation. Appl. Environ. Microbiol., 56:541-544.
Hee S. B., J. M. Lee, and S. T. Lee, 1996, Biodegradation of 4-chlorophenol via Hydroquionne Pathway by Arthrobactor Ureafaciens CPR706. FEMS Microbiology Letters, 145 :125-129.
Hicks, D. M., F. Curtin, and R. Hicks, 1992, In situ bioremediation of soil and groundwater contaminated with petroleum hydrocarbons. Water Environ. Federation, Proceedings of 65th Annual Conference & Exposition. 305-312.
Joseph J. P., M. M. Michael, G. S. John, E. C. Robert, and L. C. Ronald, 1983, Biodegradation and Photolysis of Pentachloro- phenol in Artificial Freshwater Streams, Appl. Environ. Microbiol., 46(5):1024-1031.
Jury, W. A., W. F. Spencer, and W. J. Farmer, 1983, Behavior Assessment for Trace Organics in Soil, III: Application of Screening Model, J. Environ. Qual., 12:573-579.
Kao, C. M. and Prosser, 1999, Influence of aquifer biogeochemical distribution on BTEX biodegradation under aerobic/anaerobic conditions. J. Chinese Inst. Environ. Engin., 9:187-197.
Laine, M. M. and K. S. J¢rgensen, 1996, Straw compost and bioremediated soil as inocula for the bioremediation of chlorophenol-contaminated soil. Appl. Environ. Microbiol., 62(5):1507-1513.
Laine, M. M., H. Haario, and K. S. Jorgensen, 1997, Microbial function activity during composting of chlorophenol contaminated sawmill soil. 30:21-32.
Lamar, R. T. and D. M. Dietrich, 1990, In situ depletion of pentachlorophenol from contaminated soil by Phanerochaete spp. Appl. Environ. Microbiol., 56:3093-3100.
Li, D.-Y., J. Eberspächer, B. Wagner, J. Kuntzer, and F. Lingens, 1991, Degradation of 2,4,6-trichlorophenol by Azotobacter sp. Strain GP1. Appl. Environ. Microbiol., 57:1920-1928.
Liang, Ronghui. McFarland and M. J., 1994, Biodegradation of pentachlorophenol in soil amended with the white rot fungus Phanerochaete chrysosporium. Hazardous Wawte & Hazardous Materials, 11(3):411-422.
Lin, J. E., R. F. Hickey, and H. Y. Wang, 1990, Degradation kinetics of pentachlorophenol by Phanaerochaete chrysosporium. Biotech. Biioeng., 35:1125-1134.
Liu, K. Tomoson, L. E. Kaiser, and Bull, 1982, Contam. Toxicol, 29, p.130
Liu, D., R. J. Maguire, G. Pacepavicius, B. J. Dutka, 1991, Biodegradation of recalcitrant chlorophenols by cometabolism. Environ. Toxicol. Water Qual., 6:85-95.
McGrath, R. and I. Singleton, 2000, Pentachlorophenol transformation in soil: a toxicological assessment. Soil Biology and Biochemistry, 32:1311-1314.
Mileski, G. J., J. A. Bumpus, M. A. Jurek, and S. Aust, 1988, Biodegradation of pentachlorophenol by the white rot fungus Phanerochaete chrysosporium. Appl. Environ. Microbiol., 54:2885-2889.
Mueller, J. G., P. J. Chapman, and P. H. Pritchard, 1989, Creosote-contaminated sites. Environ. Sci. Technol., 23:1197-1201.
Nelson, A. H., C. Lindgren, P.-Å. Hynning, and M. Remberger, 1988, Methylation of halogenated phenols and thiophenols by cell extracts of grampositive and gram-negative bacteria. Appl. Environ. Microbiol., 54:524-530.
O’Reilly K. and R. L. Crawford, 1989, Degradation of penta- chlorophenol by polyurethane-immobilized flavobacterium cells. Appl. Environ. Microbiol., 55(9):2113-2118.
Patel, G. B., B. J. Agnew, and C. J. Dicaire, 1991, Inhibition of pure cultures of methanogens by benzene ring compounds. Appl. Environ. Microbiol., 57:2969-2974.
Pignatello, J. J., M. M. Martinson, J. G. Steiert, R. E. Carlson, and R. L. Crawford, 1983, Biodegradation and photolysis of pentachlorophenol in artificial freshwater streams. Appl. Environ. Microbiol., 46:1024-1031.
Pollard, S. J. T., S. E. Hrudey, and P. M. Fedorak, 1994, Bioremediation of petroleum- and creosote- soils: A review of constraints. Waste Management & Research, 12:173-194.
Prescott, L. M., J. P. Horley, and D. A. Klein, 1993, Microbiology, second edition, Wm. C. Brown Communications, Inc.
Raddehaus, P. M. and S. K. Schmidt, 1992, Characterization of a novel Pseudomonas sp. That mineralizes high concentrations of pentachlorophenol. Appl. Environ. Microbiol., 58(9): 2879- 2885.
Reiner, E. A., J. Chu, and E. J. Kirsch, 1978, Microbial metabolism of pentachlorophenol. p.67-81. In K. R. Rao(ed.), Environ- mental science research, vol. 12. Pentachlorophenol:chemistry, pharmacology and environmental toxicology. Plenum Publishing Corp., New York.
Rifai, H. S., R. C. Borden, J. T. Wilson, and C. H. Ward, 1995, Intrinsic bioattenuation for subsurface restoration, p.1-30.
Ruckdeschel, G. and G. Renner, 1987, Effects of pentachlorophenol and some of its know and possible metablites on different species of bacteria. Appl. Environ. Microbiol., 53:2689-2692.
Saber, D. L. and R. L. Crawford, 1985, Isolation and characterization of Flavobacterium strains that degrade pentachlorophenol. Appl. Environ. Microbiol., 50:1512-1518.
Sander, P. R., Wittich, P. Fortnagel, H. Wilkes, and W. Franckeizot, 1991, Degradation of 1,2,4-trichloro- and 1,2,4,5- tetrachlorobenzene by Pseudomonas Strains. Appl. Environ. Micribiol., 57:1430-1440.
Semple, K. T. and T. R. Fermor, 1997, Enhanced mineralization of UL-14C-pentachlorophenol by mushroom composts. Res. Microbiol., 148: 795-798.
Skopp, J., M. D. Jawson, and J. W. Doran, 1990, Steady-state aerobic microbial activity as a function of soil water content. Soil Sci. Soc. Am. J., 54:1619-1625.
Stanlake, G. J. and R. K. Finn, 1982, Isolation and charaterization of a pentachlorophenol-degrading bacterium. Appl. Environ. Microbiol., 44:1421-1427.
Suntio, L. R., W. Y. Shiu, and D. Mackay, 1988, A review of the nature and Properties of chemicals present in pulp mill effluents. Chemosphere. 17:1249-1290.
Suzuki, T., 1983, Methylation and hydroxylation of pentachlorophenol by Mycobacterium sp. isolated from soil. J. Pestic. Sci., 8:419-428.
Tam, T. Y. and J. T. Trevor, 1981, Toxicity of pentachlorophenol to Azotobacter vinelandii. Bill. Environ. Contamin. Toxicol., 27:230-234.
Topp, E., R. L. Crawford, and R. S. Hanson, 1988, Influence of readily metabolizable carbon on pentachlorophenol metabolism by a pentachlorophenol-degrading Flavobacterium sp. Appl. Environ. Microbiol., 54:2452-2459.
Valo, R., J. Apajalahti, and M. Salkinoja-Salonen, 1985, Studies on the physiology of microbial degradation of pentachlorophenol. Appl. Microbiol. Biotechnol., 21:313-319.
Wagenet, R. J., J. L. Huston, and J. W. Bjggar, 1989, Simulating the Fate of a Volatile Pesticide in Unsaturated Soil. J. Environ. Qual., 18:78-84.
Wanger, T., 1994, In our backyard a guide to understanding pollution and its effects. Van Nostrand Reinhold, New York.
Watanabe, I. 1973, Isolation of pentachlorophenol-degrading bacteria from soil. Soil Sci. Plant Nutr., 19:109-116.
Xie, T. M., K. Abrahamsson, E. Fogelqvist, and B. Josefsson, 1986, Distribution of chlorophenolic in a marine environment. Environ. Sci. technol., 20:457-463.
Yokoyama, M. T., K. A. Johnson, and J. Gierzak, 1988, Sensitivity of ruminal microorganisms to pentachlorophenol. Appl. Environ. Micribiol., 54:2619-2624.
Zhang T., Q. Zhao, H. Huang, Q. Li, and Y. Zang, 1997, Removal of Toxic Phenol and 4-chlorophenol from Waste Water by Horseradish Peroxidase. Chemosphere, 34(4):893-903.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top