跳到主要內容

臺灣博碩士論文加值系統

(3.238.204.167) 您好!臺灣時間:2022/08/09 22:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳偉一
研究生(外文):WEI-YI CHEN
論文名稱:Fenton-like反應中氫氧自由基之生成
論文名稱(外文):The production of hydroxyl radicals during Fenton-like reaction
指導教授:葉桂君葉桂君引用關係
指導教授(外文):Kuei-Jyum Yeh
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:環境工程與科學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:111
中文關鍵詞:地下水污染整治似Fenton氧化氫氧自由基鐵氧礦物
外文關鍵詞:Groundwater remediationFenton-like oxidationHydroxyl radicalsIron oxyhydroxyl minerals
相關次數:
  • 被引用被引用:10
  • 點閱點閱:1471
  • 評分評分:
  • 下載下載:157
  • 收藏至我的研究室書目清單書目收藏:1
Fenton-like(似Fenton)氧化法為國外正在發展的土壤與地下水現地污染處理技術,其主要利用注入井將過氧化氫注入地下水層中,以土壤及地下水層砂中常見之鐵氧礦物催化,產生具強氧化能力之氫氧自由基(HO˙)來氧化有污染機物,藉以降低污染物毒性甚至達到礦化成H2O及CO2之效果。而本研究之目的是利用硝基苯做為化學探針,以批次反應模組實驗針對不同鐵氧礦物來探討HO˙產生量之最佳化條件,以及比較不同鐵氧礦物含量及型態之催化效應。
XRD分析結果顯示供試材料鐵氧礦物A及B在2θ=21.3、36.7時有針鐵礦(α-FeO(OH))繞射峰,而鐵氧礦物C以TEM判斷其主要為水合鐵礦。Fenton-like實驗結果顯示鐵氧礦物含量愈高其催化過氧化氫分解速率愈快,其中以鐵氧礦物C為最佳,且分解速率遵循一階反應。HO˙產生速率則以低H2O2添加量(0.01%)時最高,為1.2×10-6 M/min。在所有鐵氧礦物組中,過氧化氫添加量在低濃度(0.01%、0.05%、0.10%及0.50%)時,氫氧自由基之產生速率與過氧化氫濃度成反比關係,而在高濃度時(1%、2%及3%)時,其氫氧自由基產生速率只有小幅度回升。在低濃度過氧化氫(0.01%)時,氫氧自由基的有效產生量最大,即過氧化氫在低濃度時之單位利用率比在高濃度時好。而在不同鐵氧礦物催化下,高濃度之硝基苯皆有較高之有效氫氧自由基產生量。
In situ Fenton-like oxidation injects hydrogen peroxide to the subsurface to promote the production of hydroxyl radicals and oxidation of organic contaminants. The production of hydroxyl radicals, though the catalysis of H2O2 by iron oxyhyroxyl minerals, is the key of Fenton-like reaction.
In this research, the rate and yield of hydroxyl radicals produce during the Fenton-like oxidation catalyzed by different iron oxyhydroxyl materials was quantify. Nitrobenzene was used as a chemical probe for Fenton-like reaction. Equations and constants derived from reference papers were used to calculate the rate and yield of hydroxyl radicals production. The results from TEM, XRD, and chemical analysis indicate that the type of iron oxyhydroxyl minerals in test media A and B was goethite, while that in medium C was mainly ferrihydrite. The production rate of hydroxyl radicals did not increased proportional to the H2O2 depletion rates at low H2O2 doses. The highest hydroxyl radical production rate was 1.2×10-6 M/min at H2O2 of 0.01%. The production rate of hydroxyl radicals decreased when H2O2 concentrations were increased from 0.01% to 0.5%, and then rebound slightly when the H2O2 concentration was farther increased. There were high hydroxyl radicals produce in low H2O2 concentration (0.01%), in other words, low H2O2 concentration has high useful efficiency each unit. Hence, the yield of hydroxyl radicals increased with nitrobenzene concentration when different iron minerals catalysis.
總目錄
目次 頁次
中文摘要…………………………………………………….……Ⅰ
英文摘要……………………………………………………….…Ⅲ
誌謝……………………………………………………….…..…..Ⅴ
總目錄……………………………………………………...……..Ⅵ
表目錄…………………………………………………….….…...Ⅷ
圖目錄…..………………………………………………………...XI
第一章 前言…………………………………………………..…...1
第二章 文獻回顧………………………………………..………...4
2.1地下水污染………………………………………………….4
2.2 Fenton化學氧化法………………………………..………...9
2.3 Fenton-like化學氧化法……………………………………17
2.3.1 Fenton-like簡介……………………………………….17
2.3.2 鐵氧礦物之種類與型態……………………………...18
2.3.3 Fenton-like反應機制………………………………….26
2.3.4 Fenton-like反應之影響因子………………………….29
第三章 材料與方法…………………………………………..….39
3.1材料…………………………………………………...........39
3.2實驗流程與方法…………………………………………...40
3.3經驗式及相關參數值計算………………………………...43
3.4分析………………………………………………………...52
第四章 結果與討論…………………………………..…….…....55
4.1鐵氧礦物之鑑定……………………………………..…….55
4.2過氧化氫之衰減…………………………………………...65
4.3氫氧自由基之產生速率…………………………………...70
4.4硝基苯之去除與氫氧自由基之有效產量………………...78
第五章 結論…………………………………….………………..88
第六章 參考文獻…………………………..……...……..……....91
附錄一 含不同鐵氧礦物時,過氧化氫殘留率與時間之關係圖…………………………………………………….....99
附錄二 單位過氧化氫轉換率與時間之關係圖……………...108
表目錄
目次 頁次
表2-1 美國地區重大地下水污染案例.……………….………...5
表2-2 台灣重大地下水污染案件..……………….…………..…7
表2-3 一般氧化劑之相對氧化力………………...……………11
表2-4 能被Fenton試劑氧化的化合物.……………..…………12
表2-5 溶解相化合物種與氫氧自由基之反應速率常數…..….13
表2-6 近十年Fenton-like之相關研究…………………………19
表2-7 四種不同態氧化鐵之特性比較……………….….…….24
表3-1 不同pH 情形下,氫氧基產生過程中的α、β及S值…47
表3-2 HPLC設備及分析條件表.……………………….…….52
表4-1 不同供試材料之游離性鐵及無定型鐵測定值………...57
表4-2 不同供試材料之pH值及有機質……………………….64
表4-3 鐵氧礦物A在不同過氧化氫濃度時,反應之一階速率常數kobs與R2值………………………..…….………..71
表4-4 鐵氧礦物C1在不同過氧化氫濃度時,反應之一階速率常數kobs與R2值……………….……………………….72
表4-5 鐵氧礦物B在不同過氧化氫濃度時,反應之一階速率常數kobs與R2值……………….………………………….73
表4-6 鐵氧礦物C2在不同過氧化氫濃度時,反應之一階速率常數kobs與R2值……………….……………………….74
表4-7 鐵氧礦物A催化Fenton-like反應之氫氧自由基有效產生速率……………….……………………...………….79
表4-8 鐵氧礦物C1催化Fenton-like反應之氫氧自由基有效產生速率……………….……………………...………….79
表4-9 鐵氧礦物B催化Fenton-like反應之氫氧自由基有效產生速率……………….……………………...………….80
表4-10 鐵氧礦物C2催化Fenton-like反應之氫氧自由基有效產生速率……………….…………………...………….80
表4-11 鐵氧礦物A催化Fenton-like反應之氫氧自由基有效產生量……………….……………………...…………….84
表4-12 鐵氧礦物C1催化Fenton-like反應之氫氧自由基有效產生量……………….…………………...…………….84
表4-13 鐵氧礦物B催化Fenton-like反應之氫氧自由基有效產生量…………….………………………...…………….85
表4-14 鐵氧礦物C2催化Fenton-like反應之氫氧自由基有效產生量…………….……………………...…………….85
圖目錄
目次 頁次
圖2-1 八面體結構之針鐵礦模型圖…….………………….….25
圖2-2 鐵系之Eh-pH圖………………….……………………..30
圖3-1 研究流程圖……………………………………………...41
圖3-2 實驗流程圖.…………………….. ………………….…..42
圖4-1 (a)鐵氧礦物A結晶面之X-ray反射圖譜……………....58
圖4-1 (b)鐵氧礦物B結晶面之X-ray反射圖譜……………....58
圖4-1 (c)鐵氧礦物C結晶面之X-ray反射圖譜……………....59
圖4-2 (a)鐵氧礦物A之TEM照片…………………………….61
圖4-2 (b)鐵氧礦物A之TEM照片…………………………….61
圖4-3 (a)鐵氧礦物B之TEM照片…………………………….62
圖4-3 (b)鐵氧礦物B之TEM照片…………………………….62
圖4-4 (a)鐵氧礦物C之TEM照片…………………………….63
圖4-4 (b)鐵氧礦物C之TEM照片…………………………….63
圖4-5 未含鐵氧礦物時,過氧化氫殘留率與時間之關係圖.....65
圖4-6 含鐵氧礦物A(Fe=0.07M)時,過氧化氫殘留率與時間之關圖………………………………………….........66
圖4-7 含鐵氧礦物C1(Fe=0.07M)時,過氧化氫殘留率與時間之關係圖……………………………………….........66
圖4-8 含鐵氧礦物B(Fe=0.5M)時,過氧化氫殘留率與時間之關係圖………………………………………….........67
圖4-9 含鐵氧礦物C2(Fe=0.5M)時,過氧化氫殘留率與時間之關係圖……………………………………….........67
圖4-10 鐵氧礦物A催化單位過氧化氫之氫氧自由基產量效能……………………………………………………….86
圖4-11 鐵氧礦物C1催化單位過氧化氫之氫氧自由基產量效能……………………………………………………….86
圖4-12 鐵氧礦物B催化單位過氧化氫之氫氧自由基產量效能………………………………………………….……87
圖4-13 鐵氧礦物C2催化單位過氧化氫之氫氧自由基產量效能………………………………………………….……87
第六章 參考文獻
1. 王明光,2000,環境土壤化學,第八章,五南圖書出版公司。
2. 行政院環境保護署,1998,多環芳香化合物排放影響地下水污染管制相關法規研訂,EPA-87-FA15-03。
3. 行政院環境保護署,1999,地下水污染防治,行政院環境保護署,http://www.epa.gov.tw/waterpollution/四科/HP1-2.html。
4. 李尚璋,2000,Fenton法氧化TCE DNAPL探討,國立屏東科技大學環境工程與科學系研究所碩士論文。
5. 周珊珊、黃志彬、王瓊淑,1997,以顆粒化鐵氫氧化物觸媒催化過氧化氫氧化苯甲酸之研究,第二十二屆廢水處理技術研討會論文集,第210-216頁。
6. 陳世哲,1998,以水化後針鐵礦催化過氧化氫分解2-氯酚,國立交通大學環境工程研究所碩士論文。
7. 高思懷、潘鐘、張芳淑,1994,Fenton處理垃圾滲出水過程中過氧化氫與COD之分解動力,第十九屆廢水處理技術研討會論文集,第22-29頁。
8. 張秋萍、盧明俊、陳重男,1993,Fenton技術在有害廢棄物處理上之應用,工業污染防治,第46期,第107-122頁。
9. 郭魁士,1992,土壤有機質測定,土壤學實驗,中國書局,第137-140頁。
10. 黃旭暉,1998,表面溶解及過氧化氫分解對α-FeOOH/H2O2程序土除2-氯酚效應之探討,國立交通大學環境工程研究所碩士論文。
11. 經濟部水資源局,2000年台灣水文年報,http://wkgweb.wrb.gov.tw/ebooks/hyb2000/h-1-0a-index.htm。
12. 董正釱、陳秋玟、王玫驊,1994,利用亞鐵離子催化過氧化氫處理二硝酚水溶液反應行為之研究,第19屆廢水處理技術研討會論文集,第185-195頁。
13. 楊萬發,1999,水及廢水處理化學,第四章,茂昌圖書有限公司。
14. 葉桂君、鄭仲彬,1996,Fenton現地復育受氯酚污染土壤影響因子之探討,第十一屆廢水處理技術研討會論文集,第555-562頁。
15. 賴進興,1995,氧化鐵覆膜濾砂吸附過濾水中銅離子之研究,國立台灣大學環境工程研究所博士論文。
16. 駱尚廉、鄭宏德、林正芳、李達源,1991,氧化鐵覆膜濾料應用於重金屬之吸附,第十六屆廢水處理技術研討會論文集,第633-645頁。
17. 盧明俊、陳重男、粟華新、詹益欽,1997,利用針鐵礦催化過氧化氫分解2-氯酚,第二十二屆廢水處理技術研討會論文集,第147-154頁。
18. 盧明俊、陳重男、陳世哲,1998,探討針鐵礦表面催化過氧化氫分解氯酚類化合物,第二十三屆廢水處理技術研討會論文集,第642-648頁。
19. Adams, G. E. and Dorfman, L. M., 1973, Reactivity of the Hydroxyl Radical in Aqueous Solutions. Rep. No. NSRDS-NBS-46, National Bureau of Standards, Washington, D.C.
20. Barbeni, M., Minero, C., Pelizzetti, E., Borgarello E. and Serpone N., 1987, Chemical Degradation of Chlorophenols with Fenton’s Reagent. Chemosphere, 16, pp 2225-2237.
21. Barton, L. L. and Hemming, B. C., 1993, Iron chelation in plants and soil microorganisms. New York: Academic Press Inc.
22. Bigda, R. J., 1995, Consider Fenton’s Chemistry for Wastewater Treatment. Chemical Engineering Progress, December Issue, pp 62-66.
23. Blesa, M. A. and Matijevic, E., 1989, Phase Transformations of Iron Oxides, Oxyhydroxides and Hydrous Oxides in Aqueous Media, Adv. Colloid Interface Sci., 29 , pp 173-221
24. Bull, R. A. and Zeff, J. D., 1992, Chemical Oxidation, Technomic Publishing Company. Inc., Lancaster, PA., pp 26-36.
25. Carlton, H. L., Shebl, M. A. A. and Watts R. J., 1995, Development of An Injection for In Situ Catalyzed Peroxide Remediation of Contaminated Soil. Hazardous Waste & Hazardous Materials, 12 (1), pp 15-25.
26. Chen, P. Y., 1977, X-Ray Patterns of Minerals and Clays, department of natural resource geological survey occasional paper 21,Authority of the state of Indiana Bloomington., Indiana.
27. Chen, P. H. and Watts, R. J., 2000, Determination of Rates of Hydroxyl Radical Generation in mineral-Catalyzed Fenton-like Oxidation. Journal of the Chinese Institute of Environmental Engineering, 10 (3), pp 201-208.
28. Dorfman, L. M. and Adams, G. E., 1973, Reactivity of the hydroxyl radical in solutions; Natinoal standard reference data system: U.S. government pringtiong office, Washington, D.C.
29. Fenton, H. J. H., 1894, Oxidation of Tartaric Acid in Presence of Iron. Journal of Chemical Society, 65, pp 889-910.
30. Gates, D. D. and Siegrist, R. L., 1995, In Situ Chemical Oxidation of Trichloroethylene Using Hydrogen Peroxide. J. Environ. Eng., 121, pp 639-644.
31. Haber, F. and Weiss, J. J., 1934, The Catalytic Decomposition of Hydrogen Peroxide by Iron Salts. Proc. R. Soc. London Ser., A147, pp 332-351.
32. Huang, C. P., Dong, C. D. and Tang Z. M., 1995, Advanced Chemical Oxidation:It’s Present Role and Potential Future in Hazardous Waste Treatment. Chemical Engineering Progress. December Issue, pp 62-66.
33. Kakarla, K. C. and Watts, R. J., 1997, Depth of Fenton-like Oxidation in Remediation of Surface Soil. Journal of Environmental Engineering, 123 (1), pp 11-17.
34. Khan, M. A. and Watts, R. J., 1996, Mineral-catalyzed peroxidation of tetrachlorethylene, Water Air and Soil Pollution, 88, pp 247-260.
35. Kong, S. H. and Watts, R. J., 1998, Treatment of petroleum-contaminated soils using iron mineral catalyzed hydrogen peroxide. Chemosphere, 37(8), pp 1473-1482.
36. Lin, S. S. and Gurol, M. D., 1998, Catalytic Decomposition of Hydrogen Mechanism, and Implications, Env. Sci. Tech., 32, pp 1417-1423.
37. Lu, M. C., 2000, Oxidation of Chlorophenols with Hydrogen Peroxide in the Presence of Goethite. Chemosphere, 40, pp 125-130.
38. Miller, C. M. and Valentine, R. L., 1995, Hydrogen Peroxide Decomposition and Quinoline Degradation in the Preasence of Aquifer Material, Wat. Res., 29(10), pp 2353-2359.
39. Masschelein, W., Denis, M. and Ledent, R., 1997, Spectrophotometric Determination of Residual Hydrogen Peroxide, Water & Sewage Works, August Issue, pp 69-72.
40. Mckeague, J. A. and Day, J. H., 1966, Dithionite and oxalate extractable Fe and AL as aids in differentiating various classes of soils. Can. J. Soil Sci., 46, pp 13-22.
41. Mehra, O. P. and Jackson, M. L., 1960, Iron oxides removed from soils and calys by a dithionite-citrate system buffered with sodium bicarbonate. Clays Clay Miner., 7, pp 317-327.
42. Pignatello, J. J., 1992, Dark and Photoassisted Fe3+ Catalyzed of Chlorophenoxy Herbicides by Hydrogen. Environmental Science and Technology, 26, pp 944-951.
43. Rajaroplan, V. and Peters, R. W., 1993, Chemical Oxidation Technology:Ultraviolet Light/Hydrogen Peroxide, Fenton Reagent, and Titanium Dioxide-Assisted Photocatalysis. Hazardous Waste & Hazardous Materials, 10 (2), pp 107-149.
44. Ravikumar, J. X. and Gurol, M. D., 1994, Chemical Oxidation of Chlorinated Organics by Hydrogen Peroxide in the Presence of Sand, Env. Sci. Tech., 28, pp 394-400.
45. Ruan, H. D., Forst, R. L., Kloprogge, J. T. and Duong L., 2002, Infrared spectroscopy of goethite dehydroxylation: Ⅲ. FT-IR microscopy of in situ study of the thermal transformation of goethite to hematite, Spectrochimica Acta Part A, 58, pp 967-981.
46. Schwertmann, U. and Taylor, R. M., 1989, Iron Oxides In:Minerals in Soil Environments, Dixon, J. B. (ed.), 2nd ed., Soil Sci. Soc. Am. J., Medison, Wisconsin, USA.
47. Tang, W. Z. and Hung, C. P., 1995. The effect of Chlorine Position of Chorinated Phenols on their Dechlorination Kinetics by Fenton’s Reagent. Waste Management, 15 (8), pp 615-622.
48. Tyre, B. W., Watts, R. J. and Miller, G. C., 1991, Treatment of Four Biorefractory Contaminants in Soils Using Catalyzed Hydrogen Peroxide. Journal of Environment, 20, pp 832-838.
49. Valentine, R. L. and Wang, H., 1998, Iron Oxide Surface Catalyzed Oxidation of Quinoline by Hydrogen Peroxide, J. of Env. Eng., 124(1), pp 31-38.
50. Watts, R. J., Udell, M. D. and Rauch, P. A., 1990, Treatment of Pentachlorophenol Contaminated Soil Using Fenton’s Reagent. Hazardous Waste & Hazardous Materials, 7, pp 335-345.
51. Watts, R. J., Udell, M. D. and Monsen, R. M., 1993, Use of iron minerals in optimizing the peroxide treatment of contaminated soils. Water Environ. Res., 65, pp 839-844.
52. Watts, R. J., Kong, S. H., Marc, D. and William, T. B., 1994, Oxidation of Sorbed Hexachlorobenzene in Soils Using Catalyzed Hydrogen Peroxide. Journal of Hazardous Materials, 39, pp 33-47.
53. Watts, R. J., Michael, K. F., Kong, S. H. and Amy, L. T., 1999, Hydrogen Peroxide Decomposition in Model Subsurface Systems. Journal of Hazardous Materials, B69, pp 229-243.
54. Watts, R. J. and Stanton, P. C., 1999, Minerlization of Sorbed and NAPL-Phase by Catalyzed Hydrogen Peroxide. Wat. Res., 33 (6), pp 1405-1414.
55. Watts, R. J., Daniel, R. H., Alexander, P. J. and Amy, L. T., 2000, A Foundation for the Risk-Based Treatment of Gasoline-Contaminated Soils Using Modified Fenton's Reaction. Journal of Hazardous Materials, B76, pp 73-89.
56. Werner, R. H. and David, Y. C. C., 1992, Rate constants for Reaction of Hydroxyl Radicals with Several Drinking Water Contaminants, Environ. Sci. Technol., 26, pp 1005-1013.
57. Yujun, Y. and Allen, H. E., 1999, In Situ Chemical Treatment, Technology Evaluation Report, Ground-Water Remediation Technologies Analysis Center.
58. Zepp, R. G., Faust, B. C. and Holgne, J., 1992, hydroxyl radical formation in aqueous reactions(pH 3-8) of iron(II) with hydrogen peroxide: the photo-Fenton reaction. Environ. Sci. Technol., 26, pp 313-319.
59. Zhou, X. and Mopper, K., 1990, Determination of photochemically produced hydroxyl radicals in seawater and freshwater. Mar. Chem., 30, pp 71-78.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top