跳到主要內容

臺灣博碩士論文加值系統

(34.236.192.4) 您好!臺灣時間:2022/08/17 19:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林保瑞
研究生(外文):Pao-Jui Lin
論文名稱:銅、鎘在幾種台灣土壤中脫附性之探討
論文名稱(外文):The Desorption of Copper and Cadmium in Several Taiwan Soils
指導教授:李芳胤李芳胤引用關係
指導教授(外文):Fang-Yin Lee
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:環境工程與科學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:116
中文關鍵詞:吸持脫附遲滯因子移動因子
外文關鍵詞:coppercadmiumretentiondesorptionretardation factormobility factor
相關次數:
  • 被引用被引用:15
  • 點閱點閱:847
  • 評分評分:
  • 下載下載:129
  • 收藏至我的研究室書目清單書目收藏:0
摘要
學號:M8931018
論文名稱:銅、鎘在幾種台灣土壤中 頁數:116頁
脫附性之探討
校所組別:國立屏東科技大學 環境工程與科學系碩士班
畢業時間及摘要別:九十學年度第二學期碩士學位論文摘要
研究生:林保瑞 指導教授:李芳胤 博士
論文摘要內容:
本研究旨在探討幾種台灣土壤中添加銅、鎘溶液後之製備污染土中,土壤理化性質對於吸持性及脫附性之影響,以及經不同乾溼交替後對脫附所造成之影響及銅、鎘於土壤中之型態變化。同時各於一處銅、鎘污染場址採集田間污染土進行相同實驗,以評估此二種重金屬於各種土壤中之移動性與生物有效性。研究結果顯示,不同供試土壤對銅、鎘之吸持有相當差異,銅於高pH值及高碳酸鹽含量之壽豐系中因沉澱作用而有相當高之吸持量,其餘土系則以pH為8.4及黏粒含量為45.8%之太康系與pH為6.2及有機質含量為53.2 g/kg之水漣系對銅及鎘有較高之吸持量及遲滯因子,屬強酸性之快官土及平鎮系之吸持量則為最小。另發現銅之吸持量與鹽基飽和度及碳酸鹽含量呈正相關,鎘之吸持量則與pH值呈正相關。就銅、鎘之型態而言,在各種土壤之最大吸持量下,銅之分佈型態以碳酸態為主,而鎘之型態則以非專一性吸附之交換態為主,且以鎘之移動因子較大。經六次乾溼交替後,弱鍵結之水溶態、交換態與碳酸態會減少,強鍵結之鐵錳態、有機態及殘留態則有增加之趨勢,此外,移動因子則略減。在以0.01M CaCl2進行之脫附實驗發現,鎘之脫附量大於銅,且於短期間(3 小時)內銅、鎘皆會大量釋出,故移動性甚高,但隨接觸時間之增加,脫附性則會降低。而銅短期間內之脫附比例與水溶態及交換態之和呈正相關,鎘則與最大吸持量呈正相關。就土壤之酸鹼性而言,銅、鎘於酸性土壤中,皆有高於50%之脫附量,而脫附後可觀察到水溶態、交換態及碳酸態的比例減少,並以鐵錳態及有機態為主要型態。此外,脫附後期,因重金屬與土壤間存在慢反應而使脫附量減少,且仍可能持續脫附。最後比較製備與田間污染土之結果發現,銅於田間污染土中之聯結型態以鐵錳態及有機態為主,與製備污染土有所差異,此乃因長期污染所致,鎘則仍以交換態為主。脫附實驗結果顯示,銅、鎘於田間污染土中之脫附量較製備污染土小,但鎘於酸性土中之脫附量仍達32%。不過,無論製備或田間污染土,於實驗室內進行脫附實驗,銅和鎘皆仍有一定比例之量無法釋出,故受重金屬污染土壤,於田間狀態下,欲以自然力量予以移除顯然相當因難。
關鍵詞:銅、鎘、吸持、脫附、遲滯因子、移動因子
The Desorption of Copper and Cadmium
in Several Taiwan Soils
Pao-Jui Lin and Fang-Yin Lee
Department of Environmental Engineering and Science,
National Pingtung University of Science and Technology
Abstract
The problems caused by heavy-metal contaminated soils have been highly and widely concerned in Taiwan. Two kinds of soils were used in this study; one was prepared by applying Cu or Cd solutions to ten Taiwan soils and the other was collected from a Cu-contaminated site in Kaohsiung City and a Cd-contaminated site in Taoyuan County. The adsorption, desorption, and chemical forms of the two heavy metals were studied to evaluate their mobility and bioavailability in the soils. The results indicated that the Sou-Feng soils with high pH and carbonates retained the highest amounts of Cu due to the formation of Cu-precipitates. For Cu and Cd, the Tai-Kang soils with high pH value of 8.4 and high clay content of 45.8%, and Shui-Lien soils with pH value of 6.2 and organic matter content of 53.2 g/kg also had higher retention capacities and retardation factors than other soils, while Kwai-Kuan and Ping-Chen soils with very low pH values had the lowest retention capacities. The retention amounts of Cu in the soils were significantly correlated with base saturation and carbonate contents, while Cd was correlated with pH values. The sequential extraction indicated that Cu was preferentially associated with carbonates, and Cd mainly existed as exchangeable forms. Mobility factors of Cu were lower than Cd. The longer the contact time of Cu and Cd with each soil is, the higher the percentages of organic, Fe-Mn oxide, and residual forms, and the lower the desorption amounts are. The desorption experiment found that Cd was easier to be desorbed than Cu and most of the metals desorbed in the first 3 hours. The lower the soil pH values are, the higher the desorption amounts are. The desorption amounts of Cu were significantly correlated with water-soluble and exchangeable forms, while Cd was correlated with total amounts of retention. The Cu and Cd in the soils collected from contaminated sites desorbed more difficultly than those in the soils prepared in the laboratory. This finding probably resulted from the aging of the heavy metals in the field, so that the metals were mostly and stably associated with Fe-Mn oxide and organic matter. The fact that certain amounts of heavy metals remained in all soils after desorption indicated that it might be difficult to remove metals completely from their contaminated soils under natural circumstances.
Key words:Copper, Cadmium, Retention, Desorption, Retardation Factor ,Mobility Factor.
目錄 中文摘要 I 英文摘要 ...........................................................................................Ⅲ 誌謝 ...................................................................................................Ⅴ
目錄 ...................................................................................................Ⅵ 表目錄 ...............................................................................................Ⅸ 圖目錄 ...............................................................................................XI 第一章 前言 1 1.1 研究緣起 1 1.2 研究目的 2 第二章 文獻回顧 4 2.1 銅、鎘之污染源及毒性 4 2.2 土壤中重金屬吸持與脫附之影響因子 7 2.3 重金屬於土壤中之吸持機制 11 2.4 脫附作用 12 2.5 聯結態 14 2.6 等溫吸附模式簡介 16 2.6.1 Langmuir isotherm equation 16 2.6.2 遲滯因子 16 第三章 材料與方法 19 3.1 供試土壤之採集 19 3.2 供試土壤之前處理與基本性質分析 19 3.2.1 pH值 21 3.2.2 土壤水分含量 21 3.2.3 土壤之田間容水量 21 3.2.4 有機質含量 21 3.2.5 陽離子交換容量 21 3.2.6 土壤質地 22 3.2.7 鹽基飽和度 22 3.2.8 鐵、錳含量 22 3.2.9 碳酸鹽含量 22 3.3 銅、鎘污染土之製備 23 3.3.1 污染液配製 23 3.3.2 污染土之製備 23 3.3.3 污染土之銅、鎘全量分析 24 3.3.4 污染土壤中銅與鎘之聯結態 24 3.3.4.1 水溶態 25 3.3.4.2 交換態 25
3.3.4.3 碳酸態 25
3.3.4.4 鐵錳態 26
3.3.4.5 有機態 26
3.3.4.6 殘留態 26
3.3.4.7 移動因子 27
3.4 脫附實驗 27
3.4.1 累積脫附實驗 27
3.4.2 脫附實驗殘留土壤中銅與鎘之聯結態分析 28
3.5 受銅、鎘污染田間土壤之脫附實驗...................................28
3.6 重金屬傳輸之遲滯效應 29
3.6.1 總體密度 29
3.6.2 土粒密度 29
3.6.3 孔隙度 30
第四章 結果與討論 31
4.1 土壤基本性質分析 31
4.2 供試土壤對銅、鎘吸持性之探討 36
4.2.1 供試土壤對銅、鎘之吸持量 36
4.2.2 供試土壤中銅、鎘之遲滯因子 41
4.3 製備污染土中聯結態之探討 47
4.3.1 製備污染土中銅之聯結態探討 47
4.3.2 製備污染土中鎘之聯結態探討 62
4.4 製備污染土中銅、鎘脫附性之探討 79
4.4.1 製備污染土中銅之脫附性 .79
4.4.2 製備污染土中鎘之脫附性 ...89
4.5 田間污染土中銅、鎘脫附性之探討 ...97
4.5.1 田間污染土中銅之聯結型態與脫附性 98
4.5.2 田間污染土中鎘之聯結型態與脫附性 101
第五章 結論 106
第六章 參考文獻 109
第六章 參考文獻
1. 王一雄 1997 土壤環境污染與農藥 明文書局 pp.229-260。
2. 王一雄、陳尊賢、李達源 1995 土壤污染學 國立空中大學印行 pp.143-210。
3. 王一雄、高玉燦、陳玉麟 1985 重金屬鎘、鉻、銅及鋅在土壤中移動性之預測 中國農化學會誌 23:119-125。
4. 行政院環境保護署環境檢驗所 土壤檢測方法彙騙 土壤中陽離子交換容量-醋酸銨法(NIEA S202.60A);土壤重金屬檢測方法-王水消化法(NIEA S321.60C) 網址: http://www.niea.gov.tw/analysis/epa_www.htm。
5. 李芳胤、廖秋榮 1990 鎘、鉛在其污染土讓中之聚積型態、性質與分佈情形 中國農業化學會誌 28:378-386。
6. 李芳胤、廖秋榮 1992 銅、鋅、鎳在台灣部份污染土壤中之性質與份佈 中國農化學會誌 30:189-197。
7. 李瑞文 2000 銅、鋅與鎘在幾種台灣土壤中競爭吸附之探討 國立屏東科技大學環境工程與科學系碩士論文。
8. 初建 1994 台灣數種污染土類之重金屬型態及其釋放趨勢 國立中興大學土壤所碩士論文。
9. 胡伯瑜 1999 土壤中水分境況與溫度效應對於重金屬吸附與脫附行為之探討 國立中興大學環工程學系碩士論文。
10. 林秋裕 土地處置重金屬之污染問題 工業污染防治 141-145。
11. 姜榮義 駱尚廉 楊萬發 1990 鎘在未飽土壤中吸附/移動特性 第二屆土壤污染防治研討會論文集 pp.307-323。
12. 徐振盛 李孟諺 1995 環境微生物學 淑馨出版社,pp.171-172。
13. 張如燕 1989 銅、鋅、鎘、鉛在受污染土體中之移動性及在土壤各組成分中之分佈 國立台灣大學農業化學研究所碩士論文。
14. 張育祺 1999 酸鹼度及土壤成份對台灣土壤吸附銅、鎘之影響 國立屏東科技大學環境工程與科學系碩士論文。
15. 張漢昌 1996 環境污染防治 文京出版社 pp.141。
16. 黃金旺 污染環境的毒性物質-無機篇 工業染防治 175-184。
17. 郭魁士 1980 土壤實習 中國書局。
18. 郭魁士 1990 土壤學 中國書局。
19. 劉原宏 1995 台灣主要土壤中重金屬之吸附性與聯結態之探討 國立屏東技術學院環工所碩士論文。
20. 謝兆申 王明果 1991 台灣地區主要土類圖輯 國立中興大學土壤調查檢驗中心。
21. Abd-Elfattah, A. and K. Wada 1981 Adsorption of lead, copper, zinc, cobalt, and cadmium by soils that differ in cation-exchange materials. J. Soil Sci. 32:271-283.
22. Alesii, B. A., W. H. Fuller, and M. V. Boyle 1980 Effect of leachate flow rate on metal migrate through soil. J. Environ. Qual. 9:119-126
23. Alloway, B. J. 1995 Heavy metal in soils. 2nd ed. New York John Wiley & Sons.
24. Almas, A., B. R. Singh, and B. Salbu 1999 Mobility of cadmium-109 and zinc-65 in soil influenced by equilibration time,temperature,and organic matter. J. Environ. Qual. 28:1742-1750.
25. Ahumada, I., J. Mendoza, and L. Ascar 1990 Sequential extraction of heavy metals in soils irrigated with wastewater. Commun. Soil Sci. Plant Anal. 30:1507-1519.
26. Aral, M. M. 1996 Advances in groundwater pollution control and remediation. Dordrecht Boston: Klumer Academic. pp.2-13
27. Barona, A. and F. Romero 1997 Relationships among metals in the solid phase of soil and in wild plants. Water, Air and Soil Pollut. 95:59-74.
28. Barriusu, E. U., and R. Calvet 1992 Dissolved organic matter and adsorption-desorption of dimefuron, atrazine and cargetamide by soil. J. Environ. Qual. 21:359-367
29. Cavallaro, N., and M. B. McBride 1978 Copper and cadmium adsorption characteristics of selected acid and calcareous soil. Soil Sci. Soc. Am. J. 44:729-732.
30. Christensen, T. H. 1984 Cadmium soil sorption at low concentrations: I. Effect of time, cadmium load, pH, and calcium. Water, Air, and Soil Pollut. 21:105-114.
31. Flores, L., G. Blas, G. Hernandez and R. Alcala, 1995 Distribution and sequential extraction of some heavy metals from soils irrigated with wastewater from Mexico city. Water, Air and Soil Pollut. 98:105-117.
32. Fic, M. and M. Isenbeck-schroter 1989 Batch studies for the investigation of the mobility of the heavy metals Cd,Cr,Cu and Zn., Contam. Hydrol. 4:69-78.
33. Flores, L., G. Blas, G. Hernandez, and R. Alcla 1997 Distribution and sequential extraction of some heavy metals from soils irrigated with wastewater from Mexico city. Water, Air, and Soil Pollut. 98:105-117.
34. Hater, R. D. 1983 Effect of soil pH on adsorption of lead, copper, zinc, and nickel. Soil Sci. Soc. Am. J. 47:47-51
35. Hickey, M. G., and J. A. Kittrick 1984 Chemical partition of cadmium, copper, nickel and zinc in soils and sediments containing high levels of heavy metal. J. Environ. Qual. 13:372-276
36. Hinrich, B., B. McNeal and G. O'Connor, 1979 Soil Chemistry.New York, John Wiley & Sons. pp.70-101.
37. Hogg, D. S., R. G. McLaren, and R. S. Swift 1993 Desorption of copper form some New Zealand soils. Soil Sci. Soc. Am. J. 43:866-870.
38. Huang, C. P., H. A. Ellistt and R. M. Ashmeas 1997 Interfacial reactions and the fate of heavy metals in soil-water systems. J. Water Poll. Control Fed. 49:745-756.
39. Kabala, G., and B. R. Singh 2001 Fractionation and mobility of copper, lead, and zinc in soil profiles in the vicinity of a copper smelter. J. Environ. Qual.30:485-492.
40. Karczewska, A. 1996 Metal species distribution in top- and sub-soil in an area affected by copper smelter emissions. Appl. Geochem. 11:35-42.
41. Kim, N. D., and J. E. Fergusson 1991 Effectiveness of a commonly used sequential extraction technique in determining the speciation of cadmium in soil. Soil. Total Environ. 105:191-209.
42. Kinniburgh, D. G., M. L. Jackson, and J. K. Syers 1976 Adsorption of alkaline earth, transition, and heavy metal cations by hydrous oxide gels of iron and aluminium. Soil Sci. Soc. Am. J. 40:796-799.
43. Koschinsky, A., U. Fritsche, A. Winkler 2001 Sequential leaching of Peru Basin surface sediment for the assessment of aged and fresh heavy metal associations and mobility. Deep-sea Research PartII 2001 pp.3683-3699.
44. Lai, R. and B. A. Stewart 1994 Soil processes and water quality. Lewis Publishers Baca Ration pp.249-252
45. Lehmann, R. G., and R. D. Harter 1984 Assessment of copper-soil bond strength by desorption kinetics. Soil Sci. Am. J. 48:768-772
46. Lim, T. T., Joo H. T. and C. I. The 2002 Contamination time effect on lead and cadmium fractionation in a tropical coastal clay. J. Environ. Qual. 31:806-812.
47. Maiz, I., I. Arambarri, R. Garcia and E. Millan 2000 Evaluation of heavy metal availability in polluted soil by two sequential extraction procedures using factor analysis. Envoiron. Pollut., 110:3-90.
48. Matos A. T., L. M. Costa, M. P. F. Fontes, M. A. Martinez 1999 Retardation factors and dispersion-diffusion coefficients of Zn, Cu, and Pb in soils from Vicosa-MG, Brazil. AM. Soci. of Agricul. Engin. 42:903-910.
49. McBride, M. B., and J. J. Blasiak 1979 Zinc and copper solubility as a function of pH in an acid soil. Soil Sci. Soc. Am. J. 43:866-870.
50. McBride, B. M. 1994 Environmental chemistry of soils. Oxford University Press New York.
51. Morera, M. T., J. C. Echeveria, C. Mazkiaran, J. J. Garrido 2000 Isotherms and sequential extraction procedures for evaluating sorption and distribution of heavy metals in soils. Environ. Pollut. 113:135-144.
52. Naidu, R., N. S. Bolan, R. S. Kookanna, and K. G. Tiller 1994 Ionic-strength and pH-effects on the sorption of cadmium and the surface charge of soil. Eur.J.Soil Sci. 45:419-429.
53. Nelson, D. W., and L. E. Sommers 1982 Total carbon. Organic carbon, and organic matter. In A.L. Page et al.(ed.) Methods of Soil Analysis. Part2. 2nd ed. Agronomy. 9:539-580.
54. Phillips, I. R. 1999 Copper, lead, cadmium, and zinc sorption by waterlogged and air-dry soil. J. Soil Contam. 8:343-364.
55. Phillips, I. R. and M. Greenway 1998 Changes in water-soluble and exchangeable ions, CEC and Pmax under alternating waterlogged and drying conditions. Commun. Soil Sci. Plant Anal. 29:51-65.
56. Puls, R. W. and H. L. Bohn 1988 Sorption of cadmium, nickel, and zinc by kaolinite and montmorillonite suspensions. Soil Sci. Soc. Am. J. 52:1289-1292.
57. Rauret, G. 1998 Extraction procedures for the determination of heavy metals in contaminated soil and sediment. Talanta 46:449-455.
58. Salbu, B., T. Krekling, and D. H. Oughton 1998 Characterization radioactive particles in the environment. Analyst. 123:843-849
59. Salim, I. A., C. J. Miller, and J. L. Howard 1996 Sorption isotherm-sequential extraction analysis of heavy metal retention in landfill liners. Soil Sci. Soc. Am. J. 60:107-114.
60. Sanchez-Martin, M. J. and M. Sanchez-Camazano 1993 Adsorption and mobility of cadmium in natural, uncultivated soils. J. Environ. Qual.22:737-742.
61. Scheldrick, B. H. (ed.). 1984 Analytical methods manual 1984. Land resource research institute. Ottawa, Ontarion Canada.
62. Schulthess, C. P. and C. P. Huang 1990 Adsorption of heavy metals by silicon and aluminium oxide surfaces on clay minerals. Soil Sci. Soc. Am. J. 54:679-688.
63. Scott, H. D. 2000 Soil physics: agricultural and environmental applications. Ames: Iowa State University Press pp.295-299.
64. Shuman, L. M. 1985 Fractionation method for soil microelements. Soil Sci. 140:11-22.
65. Trivedi, P., and L. Axe 2000 Modeling Cd and Zn sorption to hydrous metal oxides. Environ. Sci. Technol. 34:2215-2223.
66. Tessier, A., P. G. C. Cambell, and M. Bisson 1979 Sequential extraction procedure for the speciation particulate trace metals. Anal.Chem. 51:844-851.
67. Tyler, L. D., and M.B. McBride 1982 Mobility and extractability of cadmium, copper, nickel, and zinc in organic and mineral soil columns. Soil Science 134:198-204.
68. Wasay, S. A., S. Barrington, and S. Tokunaga. 1998 Retention form of heavy metals in three polluted soils. J. Soil Contam. 7:103-119.
69. Wen, X. and H. E. Allen 1999 Mobilizatioin of heavy metals from Le An river sediment. Sci. Total Environ. 227:101-108
70. Yaron, B., R. Calvet and R. Prost 1996 Soil pollution processes and dynamics. Springer-Verlag Berlin Heidelberg New York pp.152-154.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top