|
References 1. Fodstad, Q., Olsnes, S., and Pihl, A. Inhibitory effet of abrin and ricin on the growth of transplantable murine tumors and of abrin on human cancers in nude mice. Cancer Res., 37: 4559-4567, 1977. 2. Scheld, W. M. Drug delivery to the central nervous system: general principles and relevance to therapy for infections of the central nervous system. Rev. Infect. Dis., 11: 1669-1690, 1989. 3. Egleton, R. D. and Davis, T. P. Bioavailability and transport of peptides and peptide drugs into the brain. Peptides, 18: 1431-1439,1997. 4. Mukherjee, S. et al. Endocytosis. Phys. Rev., 77: 760-790, 1997. 5. Ho, A., Schwarze, S. R., Mermelstein, S. J., Waksman, G. and Dowdy F. Synthetic protein transduction domains: enhanced transduction potential in vitro and in vivo. Cancer Research, 61: 474-477, 2001. 6. Green, M., and Loewenstein, P. M. Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell, 55: 1179-1188, 1988. 7. Frankel, A. D., and Pabo, C. O. Cellular uptake of the tat protein from human immunodeficiency virus. Cell, 55: 1189-1193, 1988. 8. Vives, E., Brodin, P., and Leblus, B. A truncated tat basic domain rapidly translocates through the plasma membrane and accumulates in the nucleus. J Biol. Chem., 272: 16010-16017, 1997. 9. Nagahara, H., Vocero-Akbani, A. M., Snyder, E. L., Ho, A., Latham, D. G., Lissy, N. A., Becker-Hapak, M., Ezhevsky, S. A., and Dowdy, S. F. Transduction of full length tat fusion proteins into mammalian cells:p27kip1 mediates cell migration. Nat. Med., 4: 1449-1452, 1998. 10. Vocero-Akbani, A., Heyden, N.V., Lissy, N. A., Ratner, L., and Dowdy, S.F. Killing HIV infected cells by direct transduction of an HIV protease-activated caspase-3 protein. Nat. Med., 5: 29-33, 1999. 11. Gius, D., Ezhevsky, S. A., Becker-Hapak, M., Nagahara, H., Wei, M. C., and Dowdy, S. F. Transduced p16INK4a peptides inhibit hypo-phosphorylation of the retinoblastoma protein and cell cycle progression prior to activation of cdk2 complexes in late G1. Cancer Res., 59: 2577-2580, 1999. 12. Schwarze, S. R., Ho, A., Vocero-Akbani, A., and Dowdy, S. F. In vivo protein transduction: delivery of biologically active protein into the mouse. Science, 285: 1569-1572, 1999. 13. Schwarze, S. R., Hruska, K. A., and Dowdy, S.F. Protein transduction: unrestricted delivery into all cells? Trends Cell Biol., 10: 290-295, 2000. 14. Hawiger, J. Noninvasive intracellular delivery of functional peptides and proteins. Curr. Opin. Chem. Biol., 3: 89-94, 1999. 15. Lindgren, M., Hallbrink, M., Prochiantz, A., and Langel U. Cell-penetrating peptides. Trends Pharmacol. Sci., 21: 99-103, 2000. 16. Ruben, S. et al. Structural and functional characterization of human immunodeficiency virus Tat protein. J. Virol., 63: 1-8, 1989. 17. Vogel, B. E. et al. A novel integrin specificity exemplified by binding of the ανβ5 integrin to the basic domain of the HIV Tat protein and vitronectin. J. Cell Biol.,121: 461-468, 1993. 18. Ensoli, B. et al. Release, uptake, and effects of extracellular human immunodeficiency virus type 1 Tat protein on cell growth and viral transactivation. J. Virol., 67: 277-287, 1993. 19. Derossi, D., Calvet, S., Trembleau, A., Brunissen, A., Chassaing, G. and Prochiantz, A. Cell internalization of the third helix of the Antennapedia homeodomain is receptor-independent. J. Biol. Chem., 271: 18188-18193, 1996. 20. Ezhevsky S. A., Nagahara, H., Vocero-Akbani, A.M., Gius, D.R., Wei, M.C. and Dowdy, S.F. Hypo-phosphorylation of the retinoblastoma protein (pRb) by cyclin D:Cdk4/6 complexes results in active pRb. Proc. Natl. Acad. Sci. U.S.A., 94, 10699, 1997. 21. Lissy, N. A. et al. TCR-antigen induced cell death (AID) occurs from a late G1 phase cell-cycle check point. Immunity, 8: 57-65, 1998. 22. Jeang, K. T., Xiao, H. and Rich, E. A. Multifaceted activities of the HIV-1 transactivator of transcription, Tat. J. Biol. Chem., 274: 28837-28840, 1999. 23. Vives, E., Granier, C., Prevot, P. and Leblue, B. Lett. Pept. Sci. 4: 429-436, 1997. 24. Pepinsky, R. B., Androphy, E.J., Corina, K., Brown, R. and Barsoum, J. Specific inhibition of a human papillomavirus E2 trans-activator by intracellular delivery of its repressor. DNA Cell Biol., 13: 1011-1019, 1994. 25. Fawell, S., Seery, J., Daikh, T., Moore, C., Chen, L. L., Pepinsky, B. and Barsoum, J. Tat-mediated delivery of heterologous protein into cells. Proc. Natl. Acad. Sci. USA., 91: 664-668, 1994. 26. Anderson, D. C., Nichols, E., Manger, R., Woodle, D., Barry, M. and Fritzberg, A. R. Tumor cell retention of antibody Fab fragments is enhanced by an attached HIV TAT protein-derived peptide. Biochem. Biophys. Res. Commun., 194: 876-884, 1993. 27. Kim, D. T., Mitchell, D. J., Brockstedt, D. G., Fong, L., Nolan, G. P., Fathman, C. G., Engelman, E. G. and Rothbard, J. B. Introduction of soluble proteins into the MHC class I pathway by conjugation to an HIV tat peptide. J. Immunol., 159: 1666-1668, 1997. 28. Derossi, D., chasseing, G. and Prochiantz, A. Trojan peptides: the penetratin system for intracellular delivery. Trends Cell Biol., 8:84-87, 1998. 29. Lin, Y.-Z., Yao, s., Veach, R. A., Torgerson, T. R. and Hawiger, J. Inhibition of nuclear translocation of transcription factor NF-kappa B by a synthetic peptide containing a cell membrane-permeable motif and nuclear localization sequence. J. Biol. Chem., 270: 14255-14258, 1995. 30. Pooga, M., Hallbrink, M., Zorko, M. and Langel, U. Cell penetration by transportan. FASEBJ, 12: 67-77, 1998. 31. Elliott, G. and O’Hare, P. Intercellular trafficking and protein delivery by a herpesvirus structural protein. Cell, 88: 223-233, 1997. 32. Wender, P. A., Mitchell, D. J., Pattabiraman, K., Pelkey, E. T., Steinman, L. and Rothbard J. B. The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: Peptoid molecular transporters. Proc. Natl. Acad. Sci. U.S.A., 97: 13003-13008, 2000. 33. Anderson, W. F. Human gene therapy. Nature, 392: 25-30, 1998. 34. Bar-Sagi, D. Mammalian cell microinjection assay. Meth. Enzymol., 255: 436-442, 1995. 35. Schwarze, S. R. and Dowdy, S. F. In vivo protein transduction: intracellular delivery of biologically active proteins, compounds and DNA. Trends Pharmacol. Sci., 21: 45-48, 2000. 36. Ford, K. G., Souberbielle, B. E., Darling, D. and Farzaneh, F. Protein transduction: an alternative to genetic intervention? Gene Ther., 8: 1-4, 2001. 37. Prochiantz, A. Messenger proteins: homeoproteins, TAT and others. Curr. Opin. Cell Biol., 12: 400-406, 2000. 38. Mann, D. A. and Frankel, A. D. Endocytosis and targeting of exogenous HIV-1 Tat protein. EMBO J., 10: 1733-1739, 1991. 39. Morris, M. C., Depollier, J., Mery, J., Heitz, F. and Divita, G. A peptide carrier for the delivery of biologically active proteins into mammalian cells. Nature Biotechnology, 19: 1173-1176, 2001. 40. Lin, J. Y., Lee, T. C., Hu. S. T. and Tung, T. C. Isolation of four isotoxic proteins and one agglutinin from jequiriti bean (Abrus precatorius). Toxicon, 19: 41-51, 1981. 41. Lin, J. Y., Tserng, K. Y., Chen, C. C., Lin, L. T., and Tung, T. C. Abrin and ricin: new anti-tumour substances. Nature, 227: 292-293, 1970. 42. Olsnes, S. and Pihl, A. Isolation and properties of abrin: a toxic protein inhibiting protein synthesis. Evidence for different biological functions of its two constituent-peptide chains. Eur. J. Biochem., 35: 179-185, 1973. 43. Stripe, F., Barbieri, L., Battelli, M. G., Soria, M. and Lappi, D. A. Ribosome-inactivating proteins from plants: present status and future prospects. BioTechnology, 10: 405-412, 1992. 44. Nicolson, G. l., AND Blaustein, J. The interaction of Ricinus communis agglutinin with normal and tumor cell surfaces. Biochim. Biophys. Acta, 266: 543-547, 1972. 45. Wu, A M., Watkins, W. M., Chen, C. P., Song, S. C., Chow, L. P. and Lin, J. Y. Native and/or asialo-Tamm-Horsfall glycoproteins Sd(a+) are important receptors for Triticum vulgaris (wheat germ) agglutinin and for three toxic lectins (abrin-a, ricin and mistletoe toxic lectin-I). FEBS Lett., 371: 32-34, 1995. 46. Baenziger, J. U., and Fiete, D. Structural determinants of Ricinus communis agglutinin and toxin specificity for oligosaccharides. J. Biol. Chem., 254: 9795-9799, 1979. 47. Ma, X. Q., Wang, Y. P., and Wang, J. H. An X-ray analysis of the orthorhombic crystal form of trichosanthin at 5 angstrom. Sci. Sin. Ser., B30: 692-697, 1987. 48. Huang, Q., Liu, S., Tang, Y., Jin, S., and Wang, Y. Studies on crystal structures, active-centre geometry and depurinating mechanism of two ribosome-inactivating proteins. Biochem. J., 309: 285-298, 1995. 49. Endo, Y., Mitsui, K., Motizuki, M. and Tsurugi, K. The mechanism of action of ricin and related toxic lectins on eukaryotic ribosomes. The site and the characteristics of the modification in 28 S ribosomal RNA caused by the toxins. J. Biol. Chem., 262: 5908-5912, 1987. 50. Hung, C. H., Lee, M. C., Chen, J. K. and Lin, J. Y. Primary structure of three distinct isoabrins determined by cDNA sequencing. Conservation and significance. J. Mol. Biol., 229: 263-267, 1993a. 51. Hung, C. H., Lee, M. C., Chen, J. K. and Lin, J. Y. Cloning and expression of three abrin A-chains and their mutants derived by site-specific mutagenesis in Escherichia coli. Eur. J. Biochem., 219: 83-87, 1994. 52. Hudson, T. H. and Grillo, F. G. Brefeldin-A enhancement of ricin A-chain immunotoxins and blockade of intact ricin, modeccin, and abrin. J. Biol. Chem., 266: 18586-18592, 1991. 53. Lambert, J. M., Goldmacher, V. S., Collinson, A. R., Nadler, L. M. and Blattler, W. A. An immunotoxin prepared with blocked ricin: a natural plant toxin adapted for therapeutic use. Cancer Res., 51: 6236-6242, 1991. 54. Barbieri, L., Battelli, M. G. and Stripe, F. Ribosome-inactivating proteins from plants. Biochim. Biophys. Acta, 1154: 237-282, 1993. 55. Eiklid, K., Olsnes, S. and Pihl, A. Entry of lethal doses of abrin, ricin and modeccin into the cytosol of HeLa cells. Exp. Cell Res., 126: 321-326, 1980. 56. Sandvig, K. and Deurs, B. Toxin-induced cell lysis: protection by 3-methyladenine and cycloheximide. Exp. Cell Res., 200: 253-262, 1992. 57. Geier, A., Bar-shalom, I., Beery, R., Haimsohn, M., Hemi, R., Malik, Z., Lunenfeld, B., and Karasik, A. Induction of apoptosis in MDA-231 cells by protein synthesis inhibitors is suppressed by multiple agents. Cancer Invest., 14: 435-444, 1996. 58. Komatsu, N., Oda, T., and Muramatsu, T. Involvement of both caspase-like proteases and serine proteases in apoptotic cell death induced by ricin, modeccin, diphtheria toxin, and pseudomonas toxin. J. Biochem. (Tokyo), 124: 1038-1044, 1998. 59. Keppler-Hafkemeyer, A., Brinkmann, U., and Pastan, I. Role of caspases in immunotoxin-induced apoptosis of cancer cells. Biochemistry, 37: 16934-16942, 1998. 60. Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., Watson, J.D. Molecular Biology of the Cell. Third Edition. (1991). 61. Jacobson, M.D. , Weil, M. and Raff, M.C. Programmed cell death in animal development. Cell, 88: 347-354, 1997. 62. Nicholson, D.W., Ali, A. Thornberry, N.A., Vaillancourt, J.,Ding, C.K, Gallant, M., Gareau, Y., Griffin, P.R., Labelle, M., Lazebnik Y.A., Munday, N.A., Raju, M., Smulson, M.E., Yamin, T.T., Yu, V.L., and Miller, D.K. Identification and inhibition of the ICE/CED3 protease necessary for mammalian apoptosis. Nature, 376: 37-43, 1995. 63. Zamzami, N., Susin, A., Marchetti, P., Hirsch, T., Gomez-Monterrey, I., Castedo, M., and Kroemer, G. Mitochondrial control of nuclearapoptosis. J. Exp. Med., 183, 1533—1544, 1996. 64. Earnshaw, W. C., Martins, L. M., Kaufmann, S. H. MAMMALIAN CASPASES: Structure, Activation, Substrates, and Functions During Apoptosis. Annu. Rev. Biochem., 68: 383-424, 1999. 65. Steller, H. Mechanisms and genes of cellular suicide. Science, 267: 1445-1449, 1995. 66. Parrizas, M., Saltiel, A. R., and Leroith, D. Insulin-like growth factor 1 inhibits apoptosis using the phosphatidylinositol 3'-kinase and mitogen-activated protein kinase pathways. J. Biol. Chem., 272: 154-161, 1997. 67. Ivanov, V.N., and Ronai, Z. Down-regulation of tumor necrosis factor alpha expression by activating transcription factor 2 increases UVC-induced apoptosis of late-stage melanoma cells. J. Biol. Chem., 274: 14079-14089, 1999. 68. Zhuang, L., Wang, B., Shinder, G. A., Shivji, G. M., Mak, T. W., and Sauder, D. N. TNF receptor p55 plays a pivotal role in murine keratinocyte apoptosis induced by ultraviolet B irradiation. J. Immunol., 162: 1440-1447, 1999. 69. Green, D. R., and Reed, J. C. Mitochondria and apoptosis. Science, 281: 1309-1312, 1998. 70. Thormberry, N. A., and Lazebnik, Y. Caspases: enemies within. Science, 281: 1312-1316, 1998. 71. Buttke, T. M., and Sandstrom, P. A. Oxidative stress as a mediator of apoptosis. Immunol. Today, 15: 7-10, 1994. 72. Jacobson, M. D. Reactive oxygen species and programmed cell death. Trends. Biochem. Sci., 21: 83-86, 1996. 73. Karbowski, M., Kurono, C., Wozniak, M., Ostrowski, M., Teranishi, M., Soji, T., and Wakabayashi, T. Cycloheximide and 4-OH-TEMPO suppress chloramphenicol-induced apoptosis in RL-34 cells via the suppression of the formation of megamitochondria. Biochim. Biophys. Acta, 1449: 25-40, 1999. 74. Li, P. F., Dietz, R., and von Harsdorf, R. Superoxide induces apoptosis in cardiomyocytes, but proliferation and expression of transforming growth factor-beta1 in cardiac fibroblasts. FEBS Letters, 448: 206-210, 1999. 75. Ye, J., Wang, S., Leonard, S. S., Sun, Y., Butterworth, L., Antonini, J, Ding, M., Rojanasakul, Y., Vallyathan, V., Castranova, V., and Shi, X. Role of reactive oxygen species and p53 in chromium(VI)-induced apoptosis. J. Biol. Chem., 274: 34974-34980, 1999. 76. Bohler, T., Waiser, J., Hepburn, H., Gaedeke, J., Lehmann, C., Hambach, P., Budde, K., and Neumayer, H. H. TNF-alpha and IL-1alpha induce apoptosis in subconfluent rat mesangial cells. Evidence for the involvement of hydrogen peroxide and lipid peroxidation as second messengers. Cytokine, 12: 986-991, 2000. 77. Liu, H., Nishitoh, H., Ichijo, H., and Kyriakis, J. M. Activation of apoptosis signal-regulating kinase 1 (ASK1) by tumor necrosis factor receptor-associated factor 2 requires prior dissociation of the ASK1 inhibitor thioredoxin. Mol. Cell Biol., 20: 2198-2208, 2000. 78. Stein, G and Oystein, F. Treatment of micrometastases from Lewis lung carcinoma with abrin and cyclophosphamide, given singly and in combination. Int. J. Cancer, 23: 530-535, 1979. 79. Anderson, L. C., Shipp, M. A., Docherty, A. J. P., and Teicher, B. A. Combination therapy including gelatinase inhibitor and cytotoxic agent reduces local invasion and metastasis of murine Lewis lung carcinoma. Cancer Research, 56: 715-718, 1996. 80. Maucerl, H. J. et al. Combined effects of angiostatin and ionizing radiation in antitumor therapy. Nature, 394: 287-291, 1998 81. Van Moorsel, C. J. A., Pinedo, H. M., Veerman, G, Bergman, A. M., Kuiper, C. M., Vermorken, J. B., van der Vijgh, W. J. F. and Peters. G. J. Mechanisms of synergism between cisplatin and gemcitabine in ovarian and non-small-cell lung cancer cell lines. British Journal of Cancer, 80: 981-990, 1999. 82. Klement, G., Baruchel, S., Rak, J., Man, S., Clark, K., Hicklin, D. J., Bohlen, P., and Kerbel, R. S. Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without overt toxicity. J. Clin. Invest., 105: R15-R24, 2000. 83. Yao, L., Pike, S. E., Setsuda, J., Parekh, J., Gupta, G., Raffeld, M., Jaffe, E. S., and Tosato, G. Effective targeting of tumor vasculature by the angiogenesis inhibitors vasostatin and interleukin-12. Blood, 96: 1900-1905, 2000.
|