跳到主要內容

臺灣博碩士論文加值系統

(3.238.204.167) 您好!臺灣時間:2022/08/13 10:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:周惠君
研究生(外文):Hui-Chun Chou
論文名稱:三種棉蚜(AphisgossypiiGlover(Homoptera:Aphididae))寄主植物上棉蚜小蜂AphelinusgossypiiTimberlake(Hymenoptera:Aphelinidae)之發育時間、功能反應及族群變動之研究
論文名稱(外文):Developmental Time, Functional Responses and Population Fluctuations of Aphelinus gossypii Timberlake (Hymenoptera: Aphelinidae) on three Host Plants of the Cotton Aphid, Aphis gossypii Glover (Homoptera: Aphididae)
指導教授:賴博永賴博永引用關係彭仁君彭仁君引用關係
指導教授(外文):Po-Yung LaiJen-Jiun Perng
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:熱帶農業研究所
學門:農業科學學門
學類:一般農業學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:66
中文關鍵詞:族群變動棉蚜小蜂寄主取食功能反應寄生發育時間植物
外文關鍵詞:population fluctuationAphelinus gossypiihost-feedingfunctional responseparasitizationdevelopmental timeplant
相關次數:
  • 被引用被引用:1
  • 點閱點閱:373
  • 評分評分:
  • 下載下載:33
  • 收藏至我的研究室書目清單書目收藏:2
棉蚜小蜂(Aphelinus gossypii Timberlake)具有寄生及取食寄主蚜蟲之雙重剝削寄主現象,乃野外棉蚜(Aphis gossypii)族群的重要天敵之一。棉蚜之寄主植物廣泛,本研究調查比較蚜小蜂在三種植物番石榴Psidium guajava L.(Myrtaceae)、紫花霍香薊Ageratum houstonianum Mill.(Compositae)及大花咸豐草Bidens pilosa L. var. radiata(B1)Sherff(Compositae)上之族群變動,並利用在三種不同植物上生長之棉蚜,來探討棉蚜小蜂發育時間及功能反應之差異。
在田間三種植物上,棉蚜寄生蜂之族群密度與種類具有明顯差異。番石榴上共採有初級寄生蜂5種,其中以Aphelinus gossypii為最多,其族群密度在11月為最多,5-9月為最少。蚜小蜂族群密度主要受番石榴上棉蚜數量的正影響(R2=0.2951,p=0.0184)。大花咸豐草採有初級寄生蜂兩種,為Aphelinus gossypii 及Aphelinus sp.,但取樣數量明顯偏低共僅14隻。紫花霍香薊則有包括A. gossypii在內的三種初級寄生蜂,其中以Aphelinus sp.為最多,其族群密度在1-3月為最多,與溫度變化關係最高(r=-0.8722,P=0.0002)。
在三種寄主植物上,棉蚜小蜂之發育時間皆有顯著差異。從產卵至化蛹之發育時間,以在番石榴上最短為5.6天,在大花咸豐草上最長為6.8天;從化蛹至羽化之發育時間,以在紫花霍香薊上最短為6.4天,在大花咸豐草上最長為6.8天;從產卵至羽化之發育時間,以在番石榴上最短為12.3天,在大花咸豐草上最長為13.7天。
於定溫25℃下,分別在約60㎝2之番石榴、紫花霍香薊及大花咸豐草三種植物葉片上,以棉蚜小蜂對8個不同棉蚜密度(2, 4, 8, 16, 32, 64, 128, 160隻/葉),處理24小時,比較寄主取食、寄生及總消耗三種棉蚜小蜂之功能反應型式。棉蚜小蜂寄主取食蚜蟲量隨棉蚜密度增加,呈現Holling第Ⅱ型功能反應型式,至160蚜蟲密度時,達到取食上限(紫花霍香薊5.75隻、大花咸豐草8.75隻、番石榴6.88隻);在寄生作用上,其寄生量亦隨棉蚜密度增加至128蚜蟲密度時,達寄生上限(紫花霍香薊25.13隻、番石榴38.13隻),大花咸豐草則至160蚜蟲密度時,才達寄生上限25.5隻,亦較符合Holling第Ⅱ型功能反應型式;包含取食及寄生之總消耗量隨寄主密度增加至128、160及128蚜蟲密度時,達寄主消耗上限(紫花霍香薊29.88隻、大花咸豐草34.25隻、番石榴44.38隻),符合Holling之第Ⅱ型功能反應模式。
本研究顯示,棉蚜初級寄生蜂在番石榴作物上之族群密度與種類較其他兩種野草為高,且棉蚜小蜂之發育時間以在番石榴作物上之發育時間最短,而在兩種野草上之發育時間較長,可能與植物種類及葉片營養化學成分有關。棉蚜小蜂在三種棉蚜寄主植物上之功能反應,亦以在番石榴作物上有最高攻擊率、最短處理時間和最大消耗寄主棉蚜上限值,對棉蚜的寄生捕食作用要較在兩種野草上為好。但兩種野草或許能在缺乏作物或營養不足等不利條件下幫助維持棉蚜之族群,進而維繫其寄生蜂族群之存在,成為寄生蜂天敵替代生長之庇護所。
The parasitoid, Aphelinus gossypii, can both parasitize and feed on its host aphids. It is an important natural enemy in regulating cotton aphid population. In this study, we investigated the population fluctuations of aphid parasitoids on three different plants (Psidium guajava L., Ageratum houstonianum Mill., Bidens pilosa L.), and compared the developmental time and functional responses of A. gossypii among the three different plants. The species composition and population densities of parasitoids were distinctively different among the three different plants. There were 5 species of primary parasitoids collected on P. guajava, among them, A. gossypii was the most abundant. Its population density reached the highest level in November, and then dropped to the lowest level from May to September. A positive correlation was detected in the density fluctuations between A. gossypii and the cotton aphid on P. guajava(R2=0.2951,p=0.0184). Three species of primary parasitoids were found on A. houstonianum, of which, Aphelinus sp. was the most abundant. Its population density reached the highest level from January to March. Temperature showed a positive correlation in the density fluctuation of Aphelinus sp. on A. houstonianum(r=-0.8722,P=0.0002). On Bidens pilosa, two primary parasitoids, Aphelinus spp. were detected, but bolt were present at a very low level with only 14 individuals collected.
There were significant differences in developmental time of A. gossypii on the three different host plants. The developmental time from parasitization to mummification was the shortest on P. guajava at 5.63 days, and the longest on B. pilosa at 6.8 days. The developmental time from mummification to adult emergence was the shortest on A. houstonianum at 6.4 days, and the longest on B. pilosa at 6.8 days. The total developmental time from parasitization to adult emergence was the shortest on P. guajava at 12.3 days, and the longest on B. pilosa at 13.7 days.
At 25℃, a single female of A. gossypii was exposed to the cotton aphid at eight different densities (2, 4, 8, 16, 32, 64, 128, 160 per leaf disk) on three different plants for 24 hours, to determined its effectiveness in host feeding . The number of the cotton aphids fed by A. gossypii increased with the increase of aphid density. A. gossypii showed a Type Ⅱ functional response. The host-feeding number reached the upper limit when aphid density at 160 aphids per leave (5.75 aphids fed on A. houstonianum, 8.75 on B. pilosa, and 6.88 on P. guajava). The parasitized aphid number reached the upper limit at aphid density of 128 aphid per leave (25.13 aphids parasitized on A. houstonianum, and 38.13 on P. guajava). The aphids parasitized on B. pilosa reached the upper limit (25.5 aphid per leaf) when aphid density increased to 160 aphids per leaf. The parasitized aphids by A. gossypii also showed a Type Ⅱ functional response type. The number of aphids consumed reached the upper limit when the aphid density at 128, 160 and 128 aphids per leaf (29.88 aphids consumed on A. houstonianum, 34.25 on B. pilosa, and 44.38 on P. guajava). The curve of consumed aphids by A. gossypii showed a Type Ⅱ functional response. Although A. gossypii showed a better performance both in predation and parasitism to cotton aphid on P. guajava, the parasitoid also has a high potential controlling the cotton aphids on the two different weeds.
中文摘要…………………………………………………...………I
英文摘要…………………………………………………..………V
表目錄…………………………………………………….…….XIII
圖目錄…………………………………………………………...XV
壹、 前言………………………………………………………….1
貳、 前人研究…………………………………………………….4
一、棉蚜之一般生態…………..……………………………….4
二、棉蚜小蜂之一般生態…...………………….……….…….5
三、植物特性對蚜蟲與寄生蜂之影響……………….……….6
四、寄生蜂之功能反應…………………………....……….….8
參、材料與方法…………………………………...……………..12
一、田間三種寄主植物上棉蚜寄生蜂族群密度變動調查… .12
1. 調查樣區描述………...………………………….……...12
2. 三種寄主植物上棉蚜寄生蜂族群密度調查……...……12
3. 田間棉蚜寄生蜂族群密度變動分析…………………...13
二、三種寄主植物上棉蚜小蜂之發育時間比較…………......14
1. 三種寄主植物上棉蚜小蜂之發育時間比較…..……….14
2. 三種寄主植物上棉蚜小蜂發育時間之比較分析……...15
三、三種寄主植物上棉蚜小蜂對不同棉蚜密度之功能反應..16
1. 供試棉蚜之飼育……………………………………...…16
2. 供試棉蚜小蜂之飼育……...……………………………16
3. 三種寄主植物上棉蚜小蜂對不同棉蚜密度之功能反應……………………………………………………………17
4. 三種寄主植物上棉蚜小蜂對不同棉蚜密度之功能反應分析……………………………………………………...…17
肆、結果…………………………………………………….……19
一、 田間三種寄主植物上棉蚜與棉蚜寄生蜂族群變動調查.19
1. 寄生蜂在三種寄主植物上之調查種類與數量比較…...19
2. 在三種寄主植物上棉蚜與棉蚜寄生蜂之密度比較..….20
3. 寄生蜂族群密度變動影響因子之逐步迴歸分析..….....22
二、 在不同寄主植物上棉蚜小蜂之發育時間比較…...……23
三、 三種寄主植物上棉蚜小蜂對不同棉蚜密度之功能反應…………………………………………………………...24
1. 棉蚜小蜂之取食功能反應…………………….………..24
2. 棉蚜小蜂寄生之功能反應………………………….…..25
3. 棉蚜小蜂寄生捕食(取食及寄生捕食)之功能反應…..26
伍、討論……………………………………………………..……27
一、 田間三種寄主植物上棉蚜與棉蚜寄生蜂族群密度變動………………………………………………………………27
二、三種寄主植物上棉蚜小蜂之發育時間…………………..29
三、三種寄主植物上棉蚜小蜂對棉蚜之功能反應……...…..29
陸、結論……………………………………….…………….……32
柒、參考文獻…………………………………….………………33
捌、作者簡介……………………………………………………..66
表目錄
表一、三種棉蚜寄主植物上所採集之寄生蜂種類與數量……...41
表二、田間三種寄主植物上之平均取樣棉蚜平均密度與寄生蜂平均密度比較……………………………………...……..42
表三、田間棉蚜族群、蚜小蜂與環境因子之相關係數…………43
表四、棉蚜小蜂在番石榴上族群變動之逐步迴歸分析….……44
表五、蚜小蜂在紫花霍香薊上族群變動之逐步迴歸分析..……45
表六、棉蚜小蜂產卵寄生在三種寄主植物上之棉蚜後,其發育至化蛹與羽化所需時間……………………..…….……..46
表七、三種寄主植物上棉蚜小蜂在不同棉蚜密度下之寄主取食、寄生與取食寄生致死量之比較……………………..47
表八、利用Holling之第Ⅱ型數學式,所估算棉蚜小蜂在三種不同寄主植物上對棉蚜寄主之取食功能反應式介量值….49
表九、利用Holling之第Ⅱ型數學式,所估算棉蚜小蜂在三種不同寄主植物上對棉蚜之寄生功能反應式介量值..……..50
表十、利用Modified Holling Type II數學式,所估算棉蚜小蜂在三種不同寄主植物上對棉蚜寄主之寄生功能反應式介量值………………………………………………………….51
表十一、利用Holling之第Ⅱ型數學式,所估算棉蚜小蜂在三種不同寄主植物上對棉蚜寄主之捕食(取食及寄生致死)功能反應式介量值……………………………………….52
圖目錄
圖一、鳳山熱帶園藝試驗分所之溫度、降雨量、濕度及風速…..53
圖二、在番石榴上棉蚜與蚜小蜂之族群密度變動…………….54
圖三、在紫花霍香薊上棉蚜與蚜小蜂之族群密度變動………..55
圖四、在大花咸豐草上棉蚜與蚜小蜂之族群密度變動………..56
圖五、棉蚜小蜂在三種寄主植物上從產卵-化蛹之發育時間….57
圖六、棉蚜小蜂在三種寄主植物上從化蛹-羽化之發育時間….58
圖七、棉蚜小蜂在三種寄主植物上從產卵-羽化之發育時間….59
圖八、棉蚜小蜂在三種寄主植物上對棉蚜之取食功能反應(被取食之棉蚜數)…………………...……………………...60
圖九、棉蚜小蜂在三種寄主植物上對棉蚜之取食功能反應(被取食之棉蚜比例)………………………………………..61
圖十、棉蚜小蜂在三種寄主植物上對棉蚜之寄生功能反應(被寄生之棉蚜數)……………………………...…………62
圖十一、棉蚜小蜂在三種寄主植物上對棉蚜之寄生功能反應(被寄生之棉蚜比例)…………………………….………..63
圖十二、棉蚜小蜂在三種寄主植物上對棉蚜之消耗功能反應(被消耗之棉蚜數)…………………………………………64
圖十三、棉蚜小蜂在三種寄主植物上對棉蚜之消耗功能反應(被消耗之棉蚜比例)…………………………..….………..65
1. 王清玲、林鳳琪。1997。台灣花木害蟲。豐年出版社。29頁。
2. 王清玲。1991。花卉害蟲彩色圖說。豐年社。166頁。
3. 余志儒、陳炳煇、劉玉章。1999。棉蚜小蜂在三種洋香瓜品種上之發育、繁殖、氣味偏好及對棉蚜族群之影響。中華昆蟲19: 101-111。
4. 林政行。1984。植物與昆蟲的共同演化。台灣省立博物館。205頁。
5. 金慧通、陶家駒。1989。臺灣省常見蚜蟲彩色圖說。興農雜誌。117頁。
6. 郝秀花。2001。棉蚜在不同寄主植物上之發育、繁殖、族群介量及其族群變動。國立中興大學昆蟲研究所碩士論文。71頁。
7. 張孝羲、趙靜雅、張廣學、陳曉峰。2001。棉蚜種群寄主轉換的適應和變異規律研究。生態學報 21: 106-111。
8. 陶家駒。1990。臺灣省蚜蟲誌。臺灣省立博物館印行。328頁。
9. 彭仁君、劉玉章。2000。棉蚜小蜂寄生作用對棉蚜發育、存活與繁殖的影響。植物保護學會會刊 43:39-46。
10. 彭仁君。1994。棉蚜與蚜小蜂之寄主-寄生蜂交互作用。國立中興大學昆蟲研究所博士論文。137頁。
11. 溫宏治、李錫山。1985。番石榴嫩稍害蟲發生消長及其防治。中華農業研究 34: 105-109。
12. 劉玉章、彭仁君。1987。棉蚜之族群增長及其溫度依變效應。中華昆蟲7: 95-111。
13. 劉玉章、黃毓斌。1991。不同光週期下棉蚜之生命表。中華昆蟲11: 106-116。
14. 歐曉明、江漢華、陳常銘。1998。茶毒黑卵蜂的功能反應。昆蟲天敵20: 13-18。
15. Aldyhim, Y. N. and A. F. Khalil. 1993. Influence of temperature and daylength on population development of Aphis gossypii on Cucurbita pepo. Entomol. Exp. Appl. 67: 167-172.
16. Bai, B. and M. Mackauer. 1990. Oviposition and host-feeding patterns in Aphelinus asychis (Hymenoptera: Aphelinidae) at different aphid densities. Econ. Entomol. 15: 9-6.
17. Brewer, M. J., J. M. Struttmann and D. W. Mornhinweg. 1998. Aphelinus albipodus (Hymenoptera: Aphelinidae) and Diaeretiella rapae (Hymenoptera: Braconidae) parasitism on Diuraphis noxia (Homoptera: Aphididae) infesting barley plants differing in plant resistance to aphids. Bio. Control. 11: 255-261.
18. Campbell, C., and M. Mackauer. 1975. The effect of parasitism by Aphidius smithi (Hymenoptera: Aphidiidae) on reproduction and population growth of the pea aphid (Homoptera: Aphididae). Can Entomol. 107: 919-926.
19. Choi, W. I., T. J. Yoon and M. I. Ryoo. 2001. Host-size-dependent feeding behaviour and progeny sex ratio of Anisopteromalus calandrae (Hym., Pteromalidae). J. Appl. Entomol. 125: 71-77.
20. Cisneros, J. J. and L. D. Godfrey. 2001. Midseason pest status of the cotton aphid (Homoptera:Aphididae) in California cotton: is nitrogen a key factor? Environl. Entomol. 30: 501-510.
21. Dixon, A. F. G., and D. M. Glen. 1971. Morph determination in the bird cheery-oat aphid, Rhopalosiphum padi L. Ann. Appl. Biol. 68: 11-21.
22. Enkegaard, A. 1994. Temperature dependent functional response of Encarsia formosa parasitizing the poinsettia-strain of the cotton whitefly, Bemisia tabaci, on poinsettia. Entomol. Exp. et Appl. 73: 19-29.
23. Hågvar, E. B. and T. Hofsvang. 1994. Colonization behaviour and parasitization by Epbedrus cerasicola (Hymenoptera: Aphidiidae) in choice studies with two species of plants and aphids. J. Appl. Entomol. 118: 23-30.
24. Hassell, M. P. 1976. The Dynamics of Competition and Predation. The Camelot press. London. 68pp.
25. Hassell, M. P., J. H. Lawton and J. R. Beddington. 1977. Sigmoid functional responses by invertebrate predators and parasitoids. J. Anim. Ecol. 46, 249-262.
26. Hayakawa, D. L., Grafius, E., and Stehr, F. W. 1990. Effects of temperature on longevity, reproduction, and development of the asparagus aphid (Homoptera: Aphididae) and the parasitoid, Diaeretiella rapae (Hymenoptera: Braconidae). Environ. Entomol. 19:890-897.
27. Holling, C. S. 1959. Some Characteristics of simple types of predation and parasitism. Can. Entomol. 91: 385-398.
28. Kocourek, F., J. Havelka, J. Beránková, and V. Jarošik, 1994. Effect of temperature of development rate and intrinsic rate of increase of Aphis gossypii reared on greenhouse cucumbers. Entomol. Exp. Appl. 71:59-64.
29. Kruse, J. J., and K. F. Raffa. 1997. Effects of selected midwestern larval host plants on performance by two strains of the gypsy moth (Lepidoptera: Lymantriidae) parasitoid Cotesia melanoscela (Hymenoptera: Braconidae). Environ. Entomol. 26: 1155-1166.
30. Mackauer, M. 1983. Quantitative Assessment of Aphidius smithi (Hymenoptera: Aphididae): fecundity, intrinsic rate of increase, and functional response. Can. Entomol. 115: 399-415.
31. Mackauer, M., and S. Kambhampati. 1984. Reproduction and longevity of cabbage aphid Brevicoryne brassicae (Homoptera: Aphididae), parasitized by Diaeretiella rapae (Hymenoptera: Aphidiidae). Can. Entomol. 116:1605-1610.
32. Mesquita, A. L. M., Lacey, L. A., and Leclant, F. 1997. Individual and combined effects of the fungus, Paecilomyces fumosoroseus and parasitoid, Aphelinus asychis Walker (Hym, Aphelinudae) on confined populations of russian wheat aphid, Diuraphis noxia Mordvilko (Hom, Aphididae) under field conditions. J. Appl. Entomol. 121: 155-163.
33. Minks, A. K. and P. Harrewijn. 1987. Aphids Their Biology, Natural Enemies and Control. Volume A. Elsevier Science Publishing Company Inc. New York. 450pp.
34. Minks, A. K. and P. Harrewijn. 1988. Aphids Their Biology, Natural Enemies and Control. Volume B. Elsevier Science Publishing Company Inc. New York. 364pp.
35. Perng, J. J. 2002. Life history traits of Aphis gossypii Glover (Hom., Aphididae) reared on four widely distributed weeds. J. Appl. Entomol.(accepted).
36. Perng, J. J. and Y. C. Liu. 2002. Age-specific survival and fecundity and their effects of the intrinsic rate of increase of Aphelinus gossypii, a parasitoid of Aphis gossypii. J. Appl. Entomol. (accepted).
37. Petitt, F. L., C. A. Loader and M. K. Schon. 1994. Reduction of nitrogen concentration in the hydroponic solution on population growth rate of the aphids (Homoptera: Aphididae) Aphis gossypii on cucumber and Myzus persicae on pepper. Environ. Entomol. 23: 930-936.
38. Powell, W., 1986: Enhancing Parasitoed Activity in Crops. In: Insect Parasitoids. J. Waage and D. Greathead (ed.). New York: Academic Press, 319-340.
39. Russell, E. P., 1989: Enemies hypothesis: a review of the effect of vegetational diversity of predatory insects and parasitoids. Environ. Entomol. 18:590-599.
40. SAS Institute. 1982. SAS User’s Guide: Statistics. SAS Institute, Cary. NC.
41. Solomon, M. E. 1949. The natural control of animal populations. J. Anim. Ecol. 18: 1-35.
42. Tang, Y. Q. and R. K. Yokomi. 1996a. Biology of Aphelinus (Hymenoptera: Aphelinidae), a parasitoid of the spirea aphid (Homoptera: Aphididae). Environ. Entomol. 25: 519-523.
43. Tang, Y. Q. and R. K. Yokomi. 1996b. Effect of parasitism by Aphelinus spiraecolae (Hymenoptera: Aphelinidae) on development and reproduction of spirea aphid (Homoptera: Aphididae). Environ. Entomol. 25: 703-707.
44. Tsai, J. H. and Y.H. Liu. 1998. Effect of temperature on development, survivorship, and reproduction of rice root aphid (Homoptera: Aphididae). Environ Entomol. 27: 662-666.
45. Van Steenis, M. J., and K. A. M. H. El-Khawass. 1995. Life history of Aphis gossypii on cucumber: influence of temperature, host plant and parasitism. Entomol. Exp. Appl. 76: 121-131.
46. Viggiani, G. 1984. Bionomics of the Aphelinidae. Ann. Rev. Entomol. 29: 257-276.
47. Volkl, W. and D. H. Stechmann. 1998. Parasitism of the black bean aphid (Aphis fabae) by Lysiphlebus fabarum (Hym., Aphidiidae) : the influence of host plant and habitat. J. Appl. Entomol. 122:201-206.
48. Weathersbee Ⅲ, A. A., D. D. Hardee and W. R. Meredith, JR. 1995. Differences in yield response to cotton aphids (Homoptera: Aphididae) between smooth-leaf and hairy-leaf isogenic cotton lines. J. Econ. Entomol. 88: 749-754.
49. Yokomi, R. K. and Y. Q. Tang. 1995. Host preference and suitability of two aphelinid (Hymenoptera:Aphelinidae) parasitoids for aphids (Homoptera:Aphididae) on citrus. Biol. Micro. Control. 88: 840-845.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top