跳到主要內容

臺灣博碩士論文加值系統

(44.197.230.180) 您好!臺灣時間:2022/08/20 14:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭振昌
研究生(外文):Chen-chang Kuo
論文名稱:四種台灣產白蟻之染色體、親緣關係及核酸定序之研究
論文名稱(外文):Studies on chromosomes, phylogenic relationships and DNA sequences of four species of termite in Taiwan
指導教授:賴博永賴博永引用關係
指導教授(外文):Po-Yung Lai, Ph.D.
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:熱帶農業研究所
學門:農業科學學門
學類:一般農業學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:109
中文關鍵詞:白蟻染色體核型RAPD分析
外文關鍵詞:termitechromosomekaryotypeRAPD
相關次數:
  • 被引用被引用:0
  • 點閱點閱:217
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
論文摘要內容:
本實驗之目的為利用白蟻傳統分類外表形態測量,白蟻染色體數和染色體核型分析,RAPD標記、DNA定序,建立白蟻遺傳變異評估的方法,並運用染色體核型分析來做分類,藉由RAPD-PCR來建立白蟻彼此之親緣關係。將台灣家白蟻,黃肢散白蟻,黑翅土白蟻兵蟻,以頭部為中心進行傳統分類形態測量,結果顯示,傳統外表型態分類不易將台灣家白蟻和黑翅土白蟻之兵蟻分辨出來,但可由外表形態分辨出黃肢散白蟻兵蟻,與台灣家白蟻、黑翅土白蟻兵蟻之不同,外表形態無法用大顎長度來區分,但頭部其他特徵可用來鑑定區別。供試白蟻經染色體數檢查的結果顯示,台灣家白蟻之兵蟻、工蟻、有翅型生殖蟻,染色體數皆為2n=66,屬二倍體,其他種如黑翅土白蟻工蟻染色體數為2n=46,黃肢散白蟻工蟻染色體數為2n=18,截頭堆沙白蟻工蟻染色體數為2n=26,亦為二倍體。供試白蟻大部份是中部著絲點染色體(m)為主。核型分析結果顯示,台灣家白蟻之兵蟻、工蟻、有翅型生殖蟻,核型公式完全相同,皆是2n=30m+1sm+2st,黑翅土白蟻工蟻為2n=20m+2sm+1st,黃肢散白蟻工蟻為2n=9m,截頭堆沙白蟻工蟻為2n=11m+2st,實驗結果顯示不同種白蟻其核型亦不同,可作為分類之依據。分析最長和最短染色體長度比值介於5.8-1.9之間。種間核型對稱係數分佈在47.4%-68.8%,顯示其核型對稱程度高。依據Stebbin核型分類,黃肢散白蟻工蟻核型分類1A,截頭堆沙白蟻工蟻核型分類2B,台灣家白蟻工蟻和黑翅土白蟻工蟻均為2C。
以30組隨機引子進行RAPD分析,其中有14組引子經PCR反應後,在電泳膠片上可產生多型性清楚DNA條帶,此14組引子產生的389個逢機增殖DNA片段,每一組引子平均可產生27.7個逢機增殖DNA片段,可以用來分辨不同的種。利用Jaccard (1908)和Nei & Li(1979) 所提出的相似度(similarity coefficient)公式來計算出不同種之間遺傳相似性及UPGMA方法所建立出來的親緣關係圖,分析結果顯示,截頭堆沙白蟻和供試的其他三種,黃肢散白蟻台灣家白蟻及黑翅土白蟻相距最遠,截頭堆沙白蟻為獨立一群,黃肢散白蟻,台灣家白蟻,及黑翅土白蟻為一群,同種白蟻工蟻和兵蟻間親緣關係,以台灣家白蟻間相似度最高達86.1%。因此這些引子可以作為種鑑定的標記以及種間遺傳變異性之評估。
以COⅠ、COⅡ、ITS2三區域基因做定序,結果顯示只有台灣家白蟻工蟻ITS2區域有產物產生,其產物長度約380個鹼基對。

Abstract
The objectives of this study were to establish a method to
assess the genetic variations of termites by measuring their
morphological characteristics used in the traditional taxonomy and
determining their number and karyotype of chromosomes as well as
analyzing the DNA sequence of Coptotermes formosanus Shiraki
by using RAPD markers. Also determined was the phylogenic
relationship among the three species of termites by using RAPD —
PCR. The results of the morphological measurements of the heads
of C. formosanus, Reticulitermes flaviceps (Oshima), and
Odontotermes formosanus (Shiraki) showed that it was difficult to
distinguish the soldier of C. formosanus from that of O. formosanus
on the basis their morphological differences. However, the soldier
of R. flaviceps was morphologically distinguishable from that of
C. formosanus and O. formosanus by other characteristics of their
heads instead of the length of their mandibles. The study of the
number of chromosomes showed that the soldier, worker and alate
castes of C. formosanus shared the same number of chromosomes
as diploid at 2n=66. The numbers of chromosomes for the worker
caste of O. formosanus, R. flaviceps, and Cryptotermes domesticus
were all diploids at 2n=46, 2n=18, and 2n=26, respectively.
Among the termites studied, the majority of their chromosomes
were metacentric (m). Results of the karyotype analyses showed
that all of the soldier, worker and alate castes of C. formosanus
shared the same karyotype as 2n=30m+1sm+2st. However, the
karyotypes of the soldier of O. formosanus, R. flaviceps, and
C. domesticus were 2n=20m+2sm+1st, 2n=9m, and 2n=11m+2st,
respectively. This showed that different species of termites had
different karyotypes; thus, karyotype analysis could be used as a
basis for termite classification. Analyses of the ratios of the
longest and shortest arms of a chromosome showed that they fell
within the range of 5.8 — 1.9. The study of the degree of
symmetry of karyotypes showed that the T.C. values for the four
species of termites studied fell within the range of 47.4% -- 68.8%,
indicating their high degree of symmetry in Karyotypes. Based on
the Stebbin’s karyotype classification, the karyotype for the worker
of R. flaviceps was classified as 1A, the worker of C. domesticus
classified as 2B, and the worker of both C. formosanus and
O. formosanus classified as 2C.
Results of the RAPD analysis showed that among the 30
random primers tested, 14 of them demonstrated clear, polymorphic
DNA bands on electrophoric gels. Using the 14 primers, a total of
389 DNA sections were randomly amplified, indicating an average
of 27.7 DNA sections amplified by each primer. This could be
used for distinguishing different termite species. Based on the
similarity coefficient proposed by Jaccard (1908) and Nei & Li
(1979), the genetic similarity among the termite species studied was
determined and the phylogenic relationship was also established by
using the UPGMA methods. Results of the study showed that C.
domesticus was determined as an independent group with the most
distant phylogenic relationship with three other species of termites,
including R. flaviceps, C. formosanus and O. formosanus.
R. flaviceps, C. formosanus and O. flaviceps were categorized in the
same group. Studies of the phylogenic relationship between the
worker and soldier castes showed that C. formosanus demonstrated
the highest degree of similarity between the two castes at 86.1%,
indicating that these primers could be used as the marker for the
species identification and for assessing genetic variations between
species.
Using the sequencing order of the three regions, COⅠ, COⅡ and ITS2, to determine the DNA sequences, the results showed that PCR product appeared only in the region of ITS2 with a length of 380bp.

目錄
中文摘要……………………………………………………….…Ⅰ
英文摘要……………………………………………………….…Ⅲ
誌謝…………………………………………………………….…Ⅴ
目錄…………………………………………………………….…Ⅵ
表次索引………………………………………………………….Ⅷ
圖次索引…………………………………………………….……Ⅸ
壹、前言…………………………………………………………...1
貳、前人研究…...…………………….…………………...………3
一、白蟻之分類地位及特徵………..………..………………...3
二、染色體數…………..…………………………….…………4
三、染色體核型分析………………………………….……..…4
四、種的鑑定之技術………..……………………………..…...7
參、材料與方法..……………………………………….……..…21
一、研究對象..……………………………………………...…21
二、白蟻傳統分類之形態測量……………….…………..…...21
三、白蟻染色體數調查及染色體形態………………….…….22
四、白蟻染色體核型分析的操作..……………………..…..…25
五、白蟻DNA RAPD-PCR分析…………..…………………26
(一)、DNA之萃取與純化…………………………..……...26
(二)、PCR與RAPD 產物電泳分析………………………27
(三)、逢機增殖DNA標記之引子篩選……………………28
(四)、核酸條帶資料分析…………………………………...28
(五)、白蟻DNA 之定序…………………………………...29
肆、結果…………………………………………………………...32
一、白蟻傳統分類形態測量…………………………...………32
二、白蟻染色體形態及數目的分布…………………………...33
三、白蟻染色體核型分析……………………………………...36
四、白蟻種類鑑定及親緣關係分析………………….………..38
(一)、隨機引子篩選……………………….………………...38
(二)、RAPD標記分析…...……………………….…………39
(三)、群叢分析……………………………………..………..43
(四)、DNA之定序……...…………………………………...45
伍、討論………...…………………………………………………46
陸、結論…………………………………………………………...54
柒、參考文獻……………………..…………………………….…55
作者簡介………………………………………………………...109
表次索引
表一、不同DNA的分子量所需的適宜循環次數………..…. 68
表二、DNA片段的PCR擴增………………………………...69
表三、按對稱到不對稱的核型分類…...………………………70
表四、家白蟻、黃肢散白蟻、黑翅土白蟻兵蟻之測量比較
..…………………………………………………….…..71
表五、家白蟻、黃肢散白蟻、黑翅土白蟻兵蟻之測量比較
..………………………………………………………...72
表六、家白蟻、黃肢散白蟻、黑翅土白蟻、截頭堆砂白蟻之工
蟻染色體數…………………...………………………..73
表七、家白蟻Coptotermes formosanus染色體數……………73
表八、家白蟻、黑翅土白蟻、黃肢散白蟻、截頭堆砂白蟻染色
體參數…………………...……………………………..74
表九、家白蟻、黑翅土白蟻、黃肢散白蟻、截頭堆砂白蟻的核
型特徵………………………………...………………..75
表十、14組Operon 引子其序列GC含量比率及增幅DNA
條帶數……………………………...…………………..76
表十一、利用Jaccard方法分析4種白蟻RAPD條帶計算
出不同種間的相似性………………….…………….77
表十二、14組引子之矩陣分析表…………..……...….……....78
圖次索引
圖一、家白蟻Coptotermes formosanus (Shiraki)有翅型成蟲….83
圖二、家白蟻Coptotermes formosanus (Shiraki)…………….....84
圖三、家白蟻Coptotermes formosanus (Shiraki)大顎……….....85
圖四、黑翅土白蟻Odontotermes formosanus (Shiraki)………...86
圖五、黃肢散白蟻Reticulitermes flaviceps (Oshima)………......87
圖六、截頭堆砂白蟻Crytotermes domesticus (Oshima)工蟻…..88
圖七、家白蟻Coptotermes formosanus工蟻染色體形態……...89
圖八、家白蟻Coptotermes formosanus兵蟻染色體形態……...90
圖九、家白蟻Coptotermes formosanus有翅型雄蟲染色體形
態...….………….…………………………..……….…….91
圖十、黑翅土白蟻Odontotermes formosanus工蟻染色體形
態. .……………………….…………………....…….…....92
圖十一、黃肢散白蟻Reticulitermes flaviceps工蟻染色體形
態.....………………...………………...………………..93
圖十二、截頭堆砂白蟻Crytotermes domesticus工蟻染色體
形態……………… .…………………………………...94
圖十三、家白蟻工蟻核型分析圖…………………………...…...95
圖十四、家白蟻兵蟻核型分析圖………………………………..96
圖十五、家白蟻有翅型雄蟲核型分析圖………………...……...97
圖十六、黑翅土白蟻工蟻核型分析圖…………………...……...98
圖十七、黃肢散白蟻工蟻核型分析圖………..……...……….....99
圖十八、截頭堆砂白蟻工蟻核型分析圖…………………...…100
圖十九、白蟻染色體數分析圖………………………………....101
圖二十、家白蟻染色體數分析圖……………………………...102
圖二十一、四種白蟻利用AP08 primer標記分析電泳膠片
圖譜………………..……………………………….103
圖二十二、四種白蟻利用OP04 prim標記分析電泳膠片圖
譜………………..………………………………….104圖二十三、4種白蟻間的親緣關係圖…………………………105
圖二十四、台灣家白蟻DNA以COl、COll、ITS2三特定
基因區域之六組引子進行PCR擴增的結果…….106
圖二十五、台灣家白蟻DNA以引子ITS2擴增的產物以
Hhal酵素切割的多態性…….………..…...……....107
圖二十六、白蟻ITS2基因部份片段序列圖…………………..108

柒、參考文獻
上野洋一郎 。1982。組織培養技術。藝軒圖書出版社。
王可青、葛頌 。1988。 國產沙屬五個種的核型研究。雲南植
物研究 20(1):58~62。
朱耀沂 。1973。 台灣昆蟲學史話。台灣大學植物病蟲害學刊
3:96~122。
杜祖智 。1954。 台灣產白蟻Capritermes nitobei (Shiraki)之生
態學的補遺。台灣醫學會雜誌 53:225~235。
李懋學、張學方 。1991。 植物染色體研究技術。東北林業
大學出版社,哈爾賓。P.142~144。
李懋學、張贊平 。1996。 作物染色體及其研究技術。中國
農業出版社,北京 p:1~5。
易希陶 。1954。 台灣之白蟻問題。台灣銀行行季刊 6:
241~266。
孫立嫻 。2000。 青嘴龍占魚Spanged empesos 尾柄上皮細
胞生物學上特性之研究 。國立屏東科技大學獸醫學系專題
討論報告。
蔡邦華、陳寧生 。1964。 中國經濟昆蟲誌第八冊等翅目白蟻。科學出版社,北京 p:56。
黃復生、李桂祥、朱世模 。1989。 中國白蟻分類及生物學。
陜西 p:605。
黃復生、李桂祥、朱世模 。1989。 中國白蟻分類與防治法。
科學出版社。北京 p:269。
黃文亮、陳麗玲 。1984。家白蟻的生物學和群體發育。昆蟲
學報27(1):64-69。
陳福旗、王妙珍、張有明、陽偉正、蕭吉雄 。1997。胡瓜自
交間同功異構變異性及其遺傳。 中國園藝42(3):
269~280。
陳福旗、李弘文 。1988。簡易澱粉膠體電泳裝置及其在同功
異構上的應用。 中華農業研究37(1):24~31。
陳福旗、郭美蕙 。1998。木瓜的胚珠及子房培養和體胚發生。
園藝作物組織培養之應用研討會專集。國立台灣大學農學
院園藝系編印。pp:50-61。
溫秋明 。1989。 花身雞魚 Therapon jarbua (Forskal) 鰭
細胞株之建立及其生物學特性研究 。國立台灣大學動物研
究所碩士論文。
葉文斌 。1999。利用分生技術鑑定蟎類。中華昆蟲特刊。12:
49-62。
趙工社、吳輝榮、周延鑫 。1989。古蹟蟲害防治技術研究初期
計畫;系列二、白蟻生態分析和防除法技術之研究,趙工
社研究室 p:59頁
廖芳心、黃鵬林 。1995。分子蔬菜育種。中國園藝41(1):1-18。
劉春吉、王明理 。1994。RFLP 分析過程中應注意的幾個問題。
遺傳 (北京)16(6):37-40。
劉邦基、張有明、許華欣。1995。RAPD 在蔬菜育種上的應用。
蔬菜育種研討專刊。桃園區農業改良場。269-274。
鍾佳宏、陳錦生 。1994。台灣產白蟻文獻之綜述及檢索表之
製作。玉山生物學報。11:193-203。
薛文蓉 。1998。台灣產歪白蟻屬、華歪白蟻屬、及象白蟻屬之
階級發育路線。國立台灣大學植物病蟲害學研究所碩士論
文。66頁。
蘇慧慈 。1996。原位分子生物技術。財團法人徐氏基金會。
Arano , H. and H. Saito. 1975. Lytological studies in family
campnulaceae Ⅱ.Karyotypes in Adenophora(Ⅰ) La
Kromoso.99:3072-3081.
Bagine. R. K. N., R. Brandl and M. Kaib. 1994. Species
delimitation in Macrotermes (Isoptera:Macrotermitidae):
Evidence from epicuticular hydrocarbons, morphology, and
ecology. Ann. Entoml. Soc. AMER. 87(5):498-506
Botstein, D., R, L, white, M. Sklnick, and R. W. Davis. 1980.
Construction of genetic linkage map in man using restriction
fragment length polymorphisms. Am. J. Human Genet. 32:
314-331.
Bronsema, D., R. L. White, M. Sklnick, and R. W. Davis. 1980.
Construction of genetic linkage map in man using restriction
fragment length polymorphisms. Am. J. Human Genet. 32:
314-331
Caporal, D. A., S. M. Rich, A. Spielman, S. R. Telford lll, and T. D.
Kocher. 1994. Discriminating between Ixodes ticks by means
of mitochondrial DNA sequences. Mol. Phyle. Evol. 4:
361-365
Carlson, D. A. and A. B. Bolten. 1984. Identification of
Africanized and European honey bees, using extracted
hydrocarbons. Bull. Entomol. Soc. Amer. 30(2):32-35
Castner, J. L. and J. L. Nation. 1984. Cuticular lipids for species
recognition of mole crickets (Orthoptra: Gryllotalpidae):ll.
Scapteriscus abbreviatus, S. imitatus S. sp. And Neocurtilla
hexadactyla. Insect Biochem. Physio. 3:127-134
Crozier, R. H. and P. Pamilo. 1996. Evolution of social insect
colonies:Sex allocation and kin selection. Oxford Univ. press,
New York.
Debener, T., F. Salamin, and C. Gebhardt. 1990. Phylogeny of wild
and cultivated Solanum species based on nuclear restriction
fragment length polymorphisms (RFLPs). Theor. Appl. Genet.
79:360-368
Dweikat, I., H. Ohm, F. Patterson, and S. Canbron. 1997.
Identification of RAPD marker for 11 Hessian fly resistance genes
in wheat. Theor. Appl. Genet. 94:419-423
Estoup, A., M. Solignac, J. M. Cornuet, J. Goudet, and A. Scholl.
1996. Genetic differentiation of continental and island
populations of Bombus terrestris (Hymenoptera:Apidae) in
Europe. Mol. Evol.22:361-365
Ford, R., E. C. K. Pang, and P. W. J. Taylor. 1999. Genetics of
resistance to ascochyta blight (Ascohyta lentis) of lentil and the
identification of closely linked RAPD markers. Theor. Appl.
Genet. 93-98
Gawel, N. J., and A. C. Bartlett. 1993. Characterization of
differences between whiteflies using RAPD-PCR. Insect Mol.
BIOL. 3:33-38
Giese, H., A. G. Holm-Jensen, H. Mathiassen, B. Kjaer, S. K.
Rasmussen, H. Bay, and J. Jensen. 1994. Distribution of
RAPD on a linkage map of barley. Hereditas 120(3):267-273
Hall, H. G. and D. R. Smith. 1991. Distinguishing African and
European honeybee matrilines using amplified mitochondrial
DNA. Proc. Natl. Acad. Sci. USA. 88:4548-4552
Hamilton, R. J. and M. W. Service. 1983. Value of cuticular and
internal hydrocarbons for the identification of larvae of
Anopheles gamgiae Giles, A. arabiensis Patton and A. melas
Theobald. Ann. Trop. Med. Parasit. 77(2):203-210
Henegariu, O., N. A. Heerema, S. R. Dlouhy, G. H. Vance and P. H.
Vogt. 1997. Multiplex PCR:Critical parameters and
step-by-step protocol. Bio. Techniques 23:504-511
Howard, R. W. and G. J Blomquist. 1982. Chemical ecology and
biochemistry of insect hydrocarbons. Ann. Rev. Entomol. 27:
149-172
Howard, R. W. C. A. McDaniel, D. R. Nelson, G. J. Blomquist, L.
T. Gelbaum and L. H. Zalkow. 1982. Cuticular hydrocarbons
of Reticulitermes virgincus (Banks) and their roles as potential
species and caste-recognition cues. J. Chem. Ecol. 8:
1227-1239
Howard, R. W., B. L. Thorne, S. C. Levings and C. A. McDaniel.
1988. Cuticular hydrocarbons as chemotaxonomic characters
for Nasutitermes corniger (Motschulsky) and N. ephratae
(Holmgrn) (Isoptera:Termitidae). Ann. Entomol. Soc. Amer.
81(3):395-399
Hoy, M. A. 1994. Insect Molecular Genetics:An introduction to
principles and applications. Academic Press, California
Innis, M. A. and D. H. Gelfand. 1990. Optimization of PCRs. In:
PCR Protocols:A guide in methods and applications. Inns,
M. A., D. H. Gelfand, J.J. Sninsky and T. J. White. (eds. )
Academic Press, INC. pp.3-12
Jaccard, P. 1908. Novelles recgerches surla distribution florale.
Bull.Soc. Vand. Sci.
Jacobsen, N. and M. Orgaard. 1996. Unifying plant molecular data
and plants. Symp.Soc. Exp. Biol. 50:61-64
Jellen, E. N. and B. S. Gill. 1996. C-banding variation in the
Moroccan oat species Avena agadiriana (2n=4x=28). Theor.
Appl. Genet. 92:726-732
Kiehne, K. and D. B. Neale. 1998. DNA pooling strategy for
saturation mapping in outbred crosses. Mol. Breed. 4:179-185
Kogan, S. C., M. Doherty and J. Gitschier. 1987. An improved
method for prenatal diseases by analysis of amplified DNA
sequences. Application to hemophilia A. N. Engl. J. Med.
317:985-990
Kuperus, W. R., and W. Chapco. 1994. Usefulness of internal
transcribed spacer regions of ribosomal DNA. In Melanopline
(Orthoptera:Acrididae) systematics. Ann. Entomol. Soc Am.
87:751-754
Lawyer, F. S., S. Stofel, R. K. Saik, K. Myambo, R. Drummond and
D. H. Celfand. 1989. Isolation, characterization, and
expression in Escherichia coli of the DNA polymerase gene
Thermus aquaticus. J. Biol. Chem. 264:6427-6437.
Levan, A., K. Fredga, and A. A. Sand berg. 1964. Nomenclature for
centromeric position on chromosome. Hereditas 52:201-220.
Lewis, W. H. 1957. Revision of the genus Rosa in North Eastern
America:A review. Amer. Rose Annu. 42:116-126.
Markert, C. L. and F. Moller. 1959. Multiple forms of enzymes:
Tissue,ontogenetic, and species specific patterns. Proc. Natl.
Acad. Sci. 45:753-763
Messeguer, R., P. Arus, and M. Carrera.1987. Identification of
peach cultivars with pollen isozymes. Sci. Hort. 31:107-117
Mowrey, B. D., D. J. Werner, and D. H. Byrne. 1990. Isozyme
survey of various species of Prunus in the subgenus
Amygdalus. Sci. Hort. 44:251-260
Mullis, K. F. Faloona, S. Scharf, R. Saiki, G. Horn and H. Erlich.
1986. Specific enzymatic amplification of DNA in vitro:the
polymerase chain reaction. Cold Spring Harbor Symp. Quant.
Biol. 51:263-273
Niedz, R., M. G. Bausher, and C. J. Hearn.1992. Use of stored
pollen to hybridize a mandarin hybrid and citrustachibana.
Hort Science 27(1):107-117.
Paran, I. And R. W. Michelmore. 1993. Development of reliable
PCR-based markers linked to downy mildew resistance gene in
lettuce. Theor. Apple. Genet. 95:985-993.
Pedro, M. R. and A. D. Alfonso. 1998. Karyotypic studies on
species of Phaseolus. Amer. J. Bot 85(1):1-9
Saiki, R. K., S. Scharf, F. Faloona, K. B. Mullis, G. T. Horn, H. A.
Erlich and N. Arnheim. 1985. Enzymatic amplification of β
-globin genomic sequence and restriction site analysis
diagnosis of sickle cell aemia. Sci 230:1350-1354.
Saiki, R. K., T. L. Bugawan, G. T. Horn, K. B. Mullis and H.
A.Erlich. 1986. Analysis of enzymatically amplified β-globin
and HLA-DQαDNA with allele-specfic oligonucleotide
probes. Nature 324:163-166.
Saiki, R. K., T. L. Bugawan, G. T. Horn, K. B. Mullis and H.
A.Erlich. 1986. Analysis of enzymatically amplified β-globin
genomic sequences and restriction site analysis diagnosis of
sickle cell aemia. Sci. 230:1350-1354.
Sedra, M. H., P. Lashermes, P. TROUSLOT, M-C. Combes, and S.
Hamon. 1998. Identification and genetic diversity analysis of
date palm varieties from morocco using RAPD markers.
Euphytica 103:75-82.
Shamimul, A. S. and K. Kondo. 1995. Differential staining with
orcein, Giemsa, CMA and DAPI for comparative chromosome
study of 12 Australian Drosera. Amer. J. Bot. 82(10):
1278-1286
Sheppard, W. S., G. J. Steck, and B. A. McPheron. 1992.
Geographic populations of the medfly may be differentiated by
mictochondrial DNA variation. Experentia 48:1010-1013
Shield, C. R., T. J. Orton, and C. W. Stuber. 1983. An outline of
general resource needs and procedures for the electrophoretic
separation of active enzymes from plant tissue. In:Tansley, S.
D. and T. J. Orton, Isozymes ( eds. ) Plant Genetics and
Breedi. Part A. PP. 443-468.
Smith, D. R., and W. M. Brown. 1988. Polymorphisms in
mitochondrial DNA of European and Africanized honey bees
(Apis mellifera). Experientia 44:257-261.
Stiles, J. I., C. Lemme, S. Sondur, M. B. Morshid, and R.
Manshardt. 1993. Using randomly amplified polymorphic
DNA for evaluating genetic relationships among papaya
cultivars. Theor. Apple. Genet. 85:697-701.
Takayama, S. Y., P. M. Freitas., M. S. Pagliarin, and L. A. R.
Batista. 1998. Chromosome number in germplasm accessions
of Paspalum (Plicatula group) from different regions in Brazil.
Euphytica 99:89-94
Tang, J., L. Toe, C. Back, P.A. Zimmerman, K. Pruess and T. R.
Unnasch. 1995. The Simulium domnosum species complex:
phylogenetic analysis and molecular identification based upon
mitochondrially encoded gene sequences. Insect Mol. Biol.
Torres, A. M., T. Millan, and J. I. Cubero. 1993. Identifying rose
cultivars using random amplified polymorphic DNA markers.
HortScience 28(4):333-334
Tracie, M. Jenkins., Rob, E. Dean., Robert, Verkerk. and Brian, T.
Forschler. 2001. Phylogenetic analyses of two mitochondrial
genes and one nuclear intron region llluminate European
subterranean termite gene flow taxonomy and introduction
dynamics4:79-88
Watson, J. A. L. and F. J. Gay. 1991。Isoptera (Termite). p:
330-347. In:Division of Entomology, Commonwealth
Scientific and Industrial Research organization. The insect of
australia:A Textbook for students and research workers. 2nd
ed. Vol. I. Cornell Univ. Press, Ithaca, New York.
Watson, J. A. L., B. M. Okot-Kotber and C. Noirot. 1985. Caste
differentiation in social insects. Pergamon Press, Oxford. 405
pp.
Welsh. J. and M. Mclelland. 1990. Fingerprinting genomes using
PCR with arbitrary primer Nucl. Acids Res. 18:7213-7218.
Weising, K., H. Nybom, K. Wolff and W. Meyer. 1994. DNA
fingerprinting in plant and fungi. CRC Press, Florida. P.24-35
Wilson, E. O. 1971. The insect societies. The Belknap Press of
Harvard University, Cambridge. 548 pp.。
Williams,J. G. K., A. R. Kubelik, K. J. Livak, J. A. Rafalski and S.
V. Tingey. 1991. DNA polymorphisms amplified by arbitrary
primers are useful as genetic markers. Nucleic Acids Res. 18:
6531-6535。
Williams, J. G. K., M. K. Hanafey, J. A. Rafalski, and S. V. Tingey.
1993. Genetic analysis using random amplified polymorphic
marker. Methods Enzymol. 218:704-740.
Yeh, W. B., C. T. Yang and S. C. Kang. 1997. Identification of
two sibling species, Ephemera formosana and E. sauteri
(Ephemeroptera:Ephemeridae), based on mitochondrial DNA
sequence analysis. Chinese J. Entomol. 17:257-268。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top