跳到主要內容

臺灣博碩士論文加值系統

(3.235.140.84) 您好!臺灣時間:2022/08/15 02:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:葛得生
研究生(外文):Holden De-Shing Ger
論文名稱:影響Glomusfasciculatum(ThaxtersensuGerd.)Gerd.&Trappe孢子發芽、菌絲生長與胡瓜根器官共生培養相關條件之探討
論文名稱(外文):Studies on the effects of some factors on spore germination of Glomus fasciculatum (Thaxter sensu Gerd.) Gerd. & Trappe and its mycelium growth and symbiotic culture with cucumber root organs
指導教授:王均琍王均琍引用關係
指導教授(外文):Chung Li Wang
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:熱帶農業研究所
學門:農業科學學門
學類:一般農業學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:118
中文關鍵詞:菌根菌
外文關鍵詞:mycorrhiza
相關次數:
  • 被引用被引用:1
  • 點閱點閱:313
  • 評分評分:
  • 下載下載:33
  • 收藏至我的研究室書目清單書目收藏:0
本研究以叢枝內生菌根菌Glomus fasciculatum (Thaxter sensu Gerd.) Gerd. & Trappe孢子與胡瓜(Cucumis sativus L.)為材料,探討菌根菌孢子與胡瓜組培根部無雜菌共生培養的可行性。試驗首先篩選最適胡瓜根器官組培營養液、孢子表面消毒法、促進孢子發芽物質與最適之共生培養液成份與濃度後,將孢子與根部行共生培養。結果顯示培養宿主胡瓜之MS營養液強度適當範圍為1/4至1/12,2,4-D適當濃度範圍為0.01至0.05 ppm。孢子以0.03 %與0.05 %次氯酸鈉溶液先後浸泡7分鐘與8分鐘後,仍有六成的發芽率,且表面的雜菌率最低。孢子發芽培養時加入3至6 ppm之橡黃素(Quercetin)可大幅促進其發芽率與菌絲生長。當MS營養液強度大於1/12,2,4-D濃度高於0.01 ppm與氮濃度高於1/12 MS所含之氮濃度時,孢子的發芽與菌絲的生長受到抑制,但蔗糖與磷對於孢子的發芽與菌絲的生長則較不具影響力。
進行共生培養時發現,發芽後的孢子並無趨化性,菌絲的生長方向為隨機性,並未朝向根部生長。此外,由於共生培養用營養液濃度常為孢子容忍度的上限,但卻為宿主胡瓜生長的下限。在此狀況下,孢子與根部兩者的培養條件皆非最適,因而可能影響共生現象的產生。
Tissue-cultured cucumber (Cucumis sativus L.) roots and spores of vesicular-arbuscular mycorrhizal fungus Glomus fasciculatum (Thaxter sensu Gerd.) Gerd. & Trappe were used to study the feasibility of asceptic symbiotic culture. The proper media for cucumber root culture, the method for spore surface sterilization, the spore germination-enhanced chemicals and the proper media strength for symbiotic culture were examined. The spores were co-cultured with the tissue-cultured roots organs. The results showed that the range of media strength for culturing cucumber roots as host was between 1/4 to 1/12 for MS solution, and 0.01 to 0.05 ppm for 2,4-D. Spores attained 60 % germination rate and had the least contamination rate when using 0.03 % sodium hypochlorite as disinfectant for 7 min and followed by 0.05 % hypochlorite for 8 min. Adding quercetin at 3-6 ppm could enhance spore germination and hyphal growth immensely. The spore germination and hyphal growth would be retarded when MS medium strength > 1/12, 2,4-D >0.01 ppm and nitrogen concentration >1/12 MS. Sugar and phosphorus had little influence on spore germination and hyphal growth.
The results observed from the symbiotic culture showed that the growth direction of hypha was unpredictable and not always grew toward the roots, so there was no tropism appeared on germinated spores. Besides, the medium strength for symbiotic culture was often too high for spore germination and, on the other hand, was too low for cucumber roots growth. Under this condition that the proper strength of culture medium was not easy to match spore and root growth, the feasibility which spores and roots form the symbiont would be affected.
中文摘要------------------------------------------I
英文摘要-----------------------------------------II
誌謝------------------------------------------- III
目錄-------------------------------------------- IV
圖次索引-----------------------------------------IX
表次索引------------------------------------------X
壹、前言------------------------------------------1
貳、前人研究--------------------------------------5
一、 菌根簡介 ----------------------------------5
二、 孢子表面消毒方法 --------------------------6
(一) 非單一消毒液之孢子表面消毒法 -----------7
(二) 單一消毒液之孢子表面消毒法 -------------9
三、 類黃酮(flavonoid)添加物對孢子發芽與菌根形
成之影響 ----------------------------------11
(一)黃酮醇(flavonol)-----------------------12
(二)黃烷酮(Flavanones)---------------------13
(三)黃酮(flavone)--------------------------13
(四)類黃酮異構物(isoflavonoid)---------------13
(五)類黃酮化學構造對孢子發芽的影響---------15
四、 MS培養基強度與氮、磷濃度對於孢子發芽與菌根
形成之影響--------------------------------16
(一)MS培養基強度對菌根菌的影響 ------------16
(二)氮濃度對菌根菌的影響-------------------17
(三)磷濃度對菌根菌的影響-------------------19
五、 糖類對孢子發芽與菌根形成之影響 -----------22
六、 生長素對孢子發芽與菌根形成的影響 ---------24
七、 菌根菌之無雜菌共生培養 -------------------27
(一)整株植物的共生培養---------------------28
(二)根器官培養-----------------------------30
參、材料與方法-----------------------------------37
一、 胡瓜根器官液體培養試驗 -------------------37
(一) 不同強度MS營養液與不同濃度2,4-D對胡瓜
根器官生長影響試驗 --------------------37
(二)蔗糖濃度對胡瓜根器官生長影響試驗-------38
(三)不同強度MS與氮濃度對於胡瓜根器官生長影
響試驗 --------------------------------38
(四)根器官培養調查項目---------------------39
二、 Glomus fasciculatum (Thaxter sensu Gerd.)
Gerd. & Trappe孢子表面消毒方法之試驗 ----39
三、 類黃酮添加物對於Glomus fasciculatum
(Thaxter sensu Gerd.) Gerd. & Trappe孢子
發芽影響之試驗 ---------------------------41
(一) 不同種類與濃度類黃酮試藥對於孢子發芽與
菌絲生長影響之試驗 -------------------41
(二) 不同濃度橡黃素(quercetin)對孢子發芽與菌
絲生長影響之試驗 ---------------------42
四、 MS營養液強度與氮、磷濃度對於
Glomus fasciculatum (Thaxter sensu Gerd.)
Gerd. & Trappe孢子發芽之影響試驗 ------------44
(一)MS營養液強度對孢子發芽影響試驗 --------44
(二)氮濃度對孢子發芽影響試驗---------------44
(三)磷濃度對孢子發芽的影響試驗-------------45
五、 蔗糖濃度對Glomus fasciculatum
(Thaxter sensu Gerd.) Gerd. & Trappe孢子發芽
之影響試驗-----------------------------------46
六、 二氯苯氧基乙酸
(2,4-dichlorophenoxy acetic acid, 2,4-D)對
Glomus fasciculatum (Thaxter sensu Gerd.)
Gerd. & Trappe孢子發芽之影響試驗--------------47
七、 胡瓜(Cucumis sativus L.) 之組培根器官與
Glomus fasciculatum (Thaxter sensu Gerd.)
Gerd. & Trappe孢子共生培養試驗 ----------------47
(一)菌根菌與胡瓜根器官共生培養試驗---------47
(二)營養液添加橡黃素(quercetin)及不同密度
孢子與胡瓜根器官共生培養試驗-----------49
(三)已發芽之孢子與胡瓜根器官共生培養試驗---49
(四)降低營養液內氮濃度,利用已發芽之孢子與
胡瓜根器官共生培養試驗-----------------50
(五)砂耕形成菌根之消毒試驗-----------------51
肆、結果-----------------------------------------52
一、胡瓜根器官液體培養-------------------------52
(一) MS營養液強度與2,4-D濃度對胡瓜根器官
生長影響------------------------------52
(二)蔗糖濃度對胡瓜根器官生長的影響 ---------52
(三)不同強度MS與氮濃度對胡瓜根器官生長的
影響----------------------------------55
二、Glomus fasciculatum (Thaxter sensu Gerd.)
Gerd. & Trappe孢子表面消毒方法之篩選 ------57
三、 類黃酮添加物對於Glomus fasciculatum
(Thaxter sensu Gerd.) Gerd. & Trappe孢子發芽
之影響 -------------------------------------59
(一) 不同種類與濃度類黃酮試藥對於孢子發芽
與菌絲生長影響 ------------------------59
(二) 不同濃度橡黃素(quercetin)對孢子發芽與
菌絲生長影響--------------------------62
四、 MS營養液強度與氮、磷濃度對於
Glomus fasciculatum (Thaxter sensu Gerd.)
Gerd. & Trappe孢子發芽之影響 -------------66
(一)MS營養液強度對孢子發芽之影響------------66
(二)氮濃度對孢子發芽之影響------------------66
(三)磷濃度對孢子發芽的影響-------------------67
五、 蔗糖濃度對Glomus fasciculatum
(Thaxter sensu Gerd.) Gerd. & Trappe孢子
發芽之影響---------------------------------71
六、 二氯苯氧基乙酸
(2,4-dichlorophenoxy acetic acid, 2,4-D)對
Glomus fasciculatum (Thaxter sensu Gerd.)
Gerd. & Trappe孢子發芽之影響----------------73
七、 胡瓜根器官與Glomus fasciculatum孢子獨立
與生培養時之養份需求-----------------------77
八、 胡瓜(Cucumis sativus L.)與
Glomus fasciculatum (Thaxter sensu Gerd.)
Gerd. & Trappe孢子之組培根器官共生培養-----78
(一)菌根菌與胡瓜根器官共生培養 -------------78
(二)營養液添加橡黃素(quercetin)及不同密度
孢子與胡瓜根器官共生培養之影響---------78
(三) 不同氮濃度下,已發芽之孢子與胡瓜根器官
共生培養 -------------------------------79
(四)砂耕形成菌根之消毒法篩選 ---------------80
伍、討論 -----------------------------------------84
陸、結論-----------------------------------------101
柒、參考文獻-------------------------------------103
圖次索引
圖1、供試類黃酮之化學構造------------------------43
圖2、胡瓜根部於不同強度MS培養液下,處理0.01 ppm
(左圖)與0.03 ppm (右圖) 2,4-D之生長狀況 ----54
圖3、胡瓜根部於不同強度MS培養液下,處理0.05 ppm
(左圖)與0.08 ppm (右圖) 2,4-D之生長狀況 ----54
圖4、5 ppm 橡黃素處理孢子四星期後發芽狀況,孢子直
徑約100μm----------------------------------61
圖5、1/12 MS固體培養下,孢子發芽與胡瓜根部共生狀
況 ------------------------------------------82
圖6、含有5ppm 橡黃素之不同體積培養液下,胡瓜根部
與孢子之共生培養二個月後 --------------------83
圖7、栽植於穴盤內胡瓜根部染色後之感染菌根 --------83
表次索引
表1、不同濃度下MS營養液之氮含量-----------------45
表2、不同濃度下MS營養液之磷含量 ----------------46
表3、不同強度MS營養液與2,4-D對液體培養下胡瓜根
器官生長之影響 -----------------------------55
表4、 胡瓜根器官於1/12 MS液體營養液,內含
0.01ppm 2,4-D時不同蔗糖濃度下生長影響 ----56
表5、不同濃度MS營養液與氮對液體培養下胡瓜根器官
生長之影響 ---------------------------------56
表6、不同消毒法對Glomus fasciculatum孢子污染率之
影響 ---------------------------------------58
表7、不同消毒法對Glomus fasciculatum孢子發芽率之
影響 ---------------------------------------58
表8、類黃酮處理四週後對於Glomus fasciculatum孢子發
芽之影響 ------------------------------------63
表9、不同濃度quercetin 對於Glomus fasciculatum孢子
發芽之影響 ---------------------------------63
表10、不同濃度quercetin處理對於Glomus fasciculatum
孢子菌絲生長之影響 ------------------------64
表11、1至10 ppm quercetin 處理四週後對於
Glomus fasciculatum孢子發芽之影響 -----------65
表12、不同MS營養液強度對Glomus fasciculatum孢子發
芽之影響 ----------------------------------69
表13、MS營養液中氮濃度對Glomus fasciculatum孢子
發芽的影響 ---------------------------------69
表14、MS營養液中磷濃度對Glomus fasciculatum孢子
發芽的影響 ---------------------------------70
表15、不同蔗糖濃度對Glomus fasciculatum孢子發芽
之影響 ------------------------------------72
表16、不同蔗糖濃度對Glomus fasciculatum孢子菌絲
生長之影響 --------------------------------72
表17、不同2,4-D濃度對Glomus fasciculatum孢子發
芽之影響 ----------------------------------75
表18、不同2,4-D濃度對Glomus fasciculatum孢子菌
絲生長之影響 ------------------------------75
表19、不同2,4-D濃度對Glomus fasciculatum孢子發
芽管之影響 --------------------------------76
表20、胡瓜根器官與Glomus fasciculatum孢子獨立與
共生培養時之養份需求 ----------------------77
表21、不同消毒法對胡瓜菌根化根器官滅雜菌效果-----81
1. 牛家琪 1994 廣東省VA菌根真菌資源調查和應用研究。 土壤學報 31:54-63
2. 王均琍 陳昇明 1994 無土栽培法生產菌根接種源。 中華農學會報 167:50-60
3. 吳繼光 林素禎 1998 台灣內生菌目及繡球菌目之分類學研究。 囊叢枝內生菌根菌應用手冊 台灣省農業試驗所 台中41-58頁
4. 吳繼光 林素禎 1998 生態環境因素與叢枝菌根形成之關係。 囊叢枝內生菌根菌應用手冊 台灣省農業試驗所 台中85-104頁
5. 吳繼光 林素禎 1998叢枝內生菌根菌之形態學。 囊叢枝內生菌根菌應用手冊 台灣省農業試驗所 台中59-61頁
6. 呂斯文 1994 囊叢枝菌根菌之無土介質接種源生產及菌種篩選研究。 台灣大學園藝研究所博士論文 7-41頁
7. 呂斯文 1994 囊叢枝菌根菌之無土介質接種源生產及菌種篩選研究。 台灣大學園藝研究所博士論文 67-96頁
8. 呂斯文 張簡秀容 張喜寧 1995 利用穴盤培養番茄菌根苗其田間生長反應。 中國園藝 41:54-67
9. 杜金池 程永雄 1990 接種內生菌根菌料開發洋瓜宿根栽培獲得成功。 豐年 40:22-25
10. 阮明淑 1998 園藝科技術語。農資中心 台北 595頁
11. 高景輝 1994 植物荷爾蒙生理。 華香園出版 台北 25-40頁
12. Allen, M.F., T.S. Moore, Jr., and M. Christensen. 1979. Growth of VAM and non VAM Bouteloa Gracilis in a defined medium. Mycologia 71:666-669
13. Azcon, R., A.C. Azcon, G. de Augilar, and J.M. Barea. 1978. Effects of plant hormones present in bacterial cultures on the formation and responses to VA endomycorrhiza. New Phytol. 80:359-364
14. Azcon-Aguilar, C., R.M.Diaz-Rodriqrez, and J.M. Barea. 1986. Effect of soil microorganisms on spore germination and growth of the vesicular-arbuscular mycorrhizal fungus Glomus mosseae. Trans. Br. mycol. Soc. 86:337-340
15. Azia, T., and M. Habte. 1989. Influence of inorganic N on mycorrhizal activity, nodulation, and growth of Leucaena in an oxisol subjected to simulated erosion. Communications in soil science and plant analysis 20:239-251
16. Barea, J.M., and C. Azcon-Aguilar. 1982. Production of plant growth —regulating substances by the VAMF Glomus mosseae. Appl. Environ. Microbiol. 43:810-813
17. Becard, G., and J.A. Fortin. 1988. Early events of VAM formation on Ri T-DNA transformed roots. New Phytol. 108:211-218
18. Becard, G., and Y. Piche. 1989. Fungal growth stimulation by CO2 and root exudates in VAM symbiosis. Appl. Environ. Microbiol. 55:2320-2325
19. Becard, G., and Y. Piche. 1989. New aspects on the acquisition of biotrophic status by a VAMF, Gigaspora margarita. New phytol. 112:77-83
20. Becard, G., D.D. Douds and P.E. Pfeffer. 1992. Extensive in vitro hyphal growth of vesicular-arbuscular mycorrhizal fungi in the presence of CO2 and flavonols. Appl. Environ. Microbiol. 58:821-825
21. Becard, G., L. Taylor, D.D. Douds, Jr., P.E. Pfeffer, and L.W. Doner. 1995. Flavonoids are not necessary plant signal compounds in AMF symbioses. Mol. Plant Microbe Interact. 8:252-258
22. Bevege, D.I. 1971. VAM of Araucaria: aspects of their ecology, physiology and role in nitrogen fixation. Ph. D. thesis, Uni. New England, Armidale, Australia.
23. Biermann, B, and R.G. Linderman. 1983. Use of VAM roots, intraradical vesicles and extraradical vesicles as inoclum. New Phytol. 95:97-105
24. Boudarga, K., F. Lapeyrie, and J. Dexheimer. 1990. A technique for dual vesicular-arbuscular endomycorrhizal/ectomycorrhizal infection of Eucalyptus in vitro. New Phytol. 114:73-76
25. Budi, S.W., B. Blal, and S. Gianinazzi. 1999. Surface-sterilization of Glomus mosseae sporocarps for studying endomycorrhization in vitro. Mycorrhiza 9:65-68.
26. Buee, M., M. Rossignol, A. Jauneau, R. Ranjeva, and G. Becard. 2000. The pre-symbiotic growth of AMF is induced by a branching factor partially purified from plant root exudates. Mol. Plant Microbe Interact. 13:693-698
27. Buwalda, J.G., and K.M. Goh. 1982. Host-fungus competition for carbon as a cause of growth depressions in VAM ryegrass. Soil Biol. Biochem. 14:103-106
28. Cade, R.M., T.C. Wehner, and F.A. Blazich. 1990. Somatic embryos derived from cotyledoms of cucumber. J. Amer. Soc. Hort. Sci. 115:691-696
29. Carr. G.R., M.A. Hinkley, F. Le Tacon, C.M. Hepper, M.G.K. Jones, and E. Thomas. 1985. Improved hyphal growth of two species of VAMF in the presence of suspension cultured plant cells. New Phytol. 101:417-426
30. Chabot, S., G. Becard, and Y. Piche. 1992. Life cycle of Glomus intraradix in root organ culture. Mycologia 84:315-321
31. Chambers, C.A., S.E. Smith, and F.A. Smith. 1980. Effects of ammonium and nitrate ions on mycorrhizal infection, nodulation and growth of Trifolium subterraneum. New Phytol. 85:47-62
32. Chang, C., A. Suzuki, S. Kumai, and S. Tamura. 1969. Chemical studies on “clover sickness” II. Biological functions of isoflavonoids and their related compounds. Agric. Biol. Chem. 33:398-408
33. Chapin, F.S., III. 1980. The mineral nutrition of wild plants. Ann. Rev. Ecol. Systematic 11:233-260
34. Daniels, B.A., and H.D. Skipper. 1982. Method for the recovery and quantitative estimation of propagules from soil. In: Schenck NC (ed) Methods and principles of mycorrhizal research. American Phytopathological Society, St. Paul, Minn, pp. 29-36
35. Daniels, B.A., and J.A. Menge. 1980. Hyperparasitization of VAMF. Phytopathology 70:584-588
36. Daniels, B.A., and J.M. Trappe. 1980. Factors affecting spore germination of the vesicular-arbuscular mycorrhizal fungus Glomus epigaeus. Mycologia 72:457-471
37. Danneberg, G., C. Latus, W. Zimmer, B. Hundeshagen, Hj. Schenider-Poetsch, and H. Bothe. 1992. Influence of VAM on phytohormone balances in maize (Zea mays L.). Plant Physiol. 141:33-39
38. Diop, T. 1990. Methodes axeniques de production d’inocula endomycorhiziens a vesicules et arbuscules: etude avec le Gigaspora margarita. M.Sc. Thesis, Univ. Laval., Quebec.
39. Djordjevic, M.A., J.W. Redmond, M. Batley, and B.G. Rolfe. 1987. Clovers secrete specific phenolic compounds which either stimulate or repress nod gene expression in Rhizobium trifolii. EMBO J. 6:1173-1179
40. Ecker, J.R., and R.W. Davis. 1987. Plant defense genes are regulated by ethylene. Proc. Natl. Acad. Sci. USA 84:5202-5206
41. Elias, K.S., and G.R. Safir. 1987. Hyphal elongation of Glomus fasciculatus in response to root exudates. Appl. Environ. Microbiol. 53:1928-1933
42. Filippi, C., G. Bagnoli, A.S. Citernessi, and M. Giovannetti.1998. Ultrastructural spatial distribution of bacteria associated with sporocarps of Glomus mosseae. Symbiosis 24:1-12
43. Fracchia, S., M.T. Mujica, I. Garcia-Romera, J.M. Garccia-Garrido, J. Martin, J.A. Ocampo, and A. Godeas. 1998. Interactions between Glomus mosseae and arbuscular mycorrhizal sporocarp-associated saprophytic fungi. Plant Soc. 200:131-137
44. Gamborg, O.L., and T.A.G. La Rue. 1968. Ethylene produced by plant cells in suspension cultures. Nature 220:604-605
45. Gerdemann, J.W., and J.M. Trappe. 1974. The endogonaceae in the Pacific North-west. Mycol. Mem. 5:1-76
46. Gianinazzi-Pearson, V., B. Branzanti, and S. Gianinazzi. 1989. In vitro enhancement of spore germination and early hyphal growth of a VAMF by host root exudates and plant flavonoids. Symbiosis 7:243-255
47. Gilmore, A.E. 1968. Phycomycetous mycorrhizal organisms collected by open-pot culture methods. Hilgardia 39:87-105
48. Gogala, N. 1991. Regulation of mycorrhizal infection by hormonal factors produced by hosts and fugi. Experientia 47:331-340
49. Graham, J.H. 1982. Effect of citrus root exudates on germination of chlamydospores of the VAMF, Glomus epigaeum. Mycologia 74:831-835
50. Guggolz, J., A. Livingston, and E.M. Bickoff. 1961. Detection of daidzein, formononetin, genistein,, and biochanin A in forages. J. Agric. Food Chem. 9:330-332
51. Gunze, C.M.B., and C.M.R. Hennessy. 1980. Effect of host-applied auxin on development of endomycorrhiza in cowpeas. Trans. Br. mycol. Soc. 74:247
52. Hayman, D.S. 1970. Endogone spore numbers in soil and VAM in wheat as influenced by season and soil treatment. Trans. Br. mycol. Soc. 54:53-63
53. Hepper, C.M. 1979. Germination and growth of Glomus caledonius spores: the effects of inhibitors and nutrients. Soil Biol. Biochem. 11:269-277
54. Hepper, C.M. 1983. The effect of nitrate and phosphate on the VAM infection of lettuce. New phytol. 93:389-399
55. Hepper, C.M., and G.A. Smith. 1976. Observation’s on the germination of Endogone spores. Trans. Br. mycol. Soc. 66:189-194
56. Hirsch, A.M., Y. Fang, S. Asad, and Y. Kapulnik. 1997. The role of phytohormones in plant microbe symbioses. Plant and soil 194:171-184
57. Isobe, K., and Y. Tsuboki. 1997. Study on utilization of AMF in kidney bean cultivation- effects of available phosphorus content on the infection of AMF and two species of AMF on the growth of kidney bean (Phaseolus vulgaris L.) Jpn. J. Crop Sci. 66:374-380
58. Isobe, K., and Y. Tsuboki. 1998. Relationship between the amount of root exudate and the infection rate of AMF in gramineous and leguminous crops. Plant Prod. Sci. 1:37-38
59. Jackson, Wm. T. 1959. The effects of pectinase and cellulase preparations on the growth and development of root hairs. Physiol. Plant. 12:502
60. Johnson, C.R., W.M. Jarrell, and J.A. Menge. 1984. Influence of ammonium: nitrate ratio and solution pH on mycorrhizal infection, growth and nutrient composition of Chrysanthemum morifolium var. Circus. Plant and Soil 77:151-157
61. Jolicoeur, M., R.D. Williams, C. Chavarie, J.A. Fortin, and J. Archambault. 1999. Production of Glomus intraradices propagules, an arbuscular mycorrhizal fungus, in an airlift bioreactor. Biotechnology and bioengineering. 63: 224-232
62. Karol, S., and G.R. Safir. 1987. Hyphal elongation of Glmous fasciculatus in response to root exudates. Appl. Environ. 53:1928-1933
63. Kose, R.E. 1981. Giagspora gigantean: Observations on spore germination of a VAMF. Mycologia 73:288-300
64. Koske, R.E., and J.N. Gemma. 1989. A modified procedure staining roots to detect VA mycorrhizas. Mycol. Res. 92:486-488
65. Kruckeelmann, H.W. 1975. Effect of fertilizers, soils, soil tillage, and plant species on the frequency of Endogone chlamydospores and mycorrhizal infection in arable soils. In: Endomycorrhizas, (Ed. by F.E. Sanders et al.) pp. 511-525. Academic, London
66. Kucey, R.M.N., and E.A. Paul. 1983. VAM spore populations in various Saskatchewan soils and the effect of inoculation with Glomus mosseae on faba bean growth in greenhouse and field trials. Can. J. Soil Sci. 63:87-95
67. Lanowska, J. 1966. Influence of different sources of nitrogen on the development of mycroohiza in Pisum sativum. Pamietnik Pulawski 21:365-386
68. Lawton, M.A., and C.J. Lamb. 1987. Transcriptional activation of plant defense genes by fungal elicitor, wounding and infection. Mol. Cell. Biol. 7:335-341
69. Lovato, P., H. Schuepp, A. Trouvelot, and S. Gianinazzi. 1995. Application of arbuscular mycorrhizal fungi in orchard and ornamental plants. In:Varma A, Hock B (eds) Mycorrhiza:structure, molecular biology and biotechnology. Springer., Heidelberg, pp 443-464
70. Ludwig-Muller, J., M. Kaldorf, E. Sutter, and E. Epstein. 1997. Indole-3-butyric acid (IBA) is enhanced in young maize (Zea mays L.) roots colonized with the AMF Glomus intraradices. Plant Sci. 125:153-162
71. Lynn, D.G., and M. Chang. 1990. Phenolic signals in cohabitation: implications for plant development. Ann. Rev. Plant Physiol. Plant Mol. Biol. 41:497-526
72. MacDonald, R.M. 1981. Routine production of axenic VAM. New Phytol. 89:87-93
73. MacDonald, R.M., and M. Lewis. 1978. The occurrence of some acid phosphatase and dehydrogenases in the VAF Glomus mosseae. New Phytol. 80:135-141
74. MacDonald, R.M., and M.R. Chandler. 1981. Bacterium-like organelles in the VAMF Glomus caledonius. New Phytol. 89:241-246
75. Mejstrik, J. 1973. Advances in the study of VAM. Ann. Rev. Phytopathol. 11:171-196
76. Menge, J.A., D.J. Bagyaraj, E.L.V. Johnson, and R.T. Leonard. 1978. Phosphorus concentrations in plants responsible for inhibition of mycorrhizal infection. New Phytol. 80:575-578
77. Mertz, S.M. Jr., J.J. Heithaus III, and R.L. Bush. 1979. Mass production of axenic spores of the endomycorrhizal fungus Gigaspora margarita. Trans. Br. mycol. Soc. 72:167-169
78. Miller, L.P., and S.E.A. McCallan. 1957. Toxic action of metal ions to fungus spores. J. Agric. Food Chem. 5:116-122
79. Miller-Wideman, M.A., and L.S. Watrud. 1984. Sporulation of Gigaspora margarita on root cultures of tomato. Can. J. Microbiol. 30:642-646
80. Miranda, J.C.C., and P.J. Harris. 1994. Effects of soil phosphorus on spore germination and hyphal growth of arbuscular mycorrhizal fungi. New Phytol. 128:103-108
81. Moose, B. 1959. The regular germination of resting spores and some observations on the growth requirements of an Endogone sp. causing VAM. Trans. Brit. mycol. Soc. 42:273-286
82. Moose, B. 1962. The establishment of VA mycorrhiza under aseptic conditions. J. Gen. Microbiol. 27:509-520
83. Moose, B. 1972. Growth of Endogone mycorrhiza in agar medium. Rep. Rothamsted Experimental station. 1971, p93
84. Moose, B. 1988. Some studies relating to independent growth of vesicular arbuscular endophytes. Can. J. Bot. 66:2533-2540
85. Moose, B., and C. Hepper. 1975. Vesicular-arbuscular mycorrhizal infections in root organ cultures. Physiol. Plant Pathol. 5:215-223
86. Moose, B., and J.M. Phillips. 1971. The influence of phosphate and other nutrients on the development of VAM in culture. J. Gen. Microbiol. 69:157-166
87. Morandi, D. 1989. Effect of xenobiotics on endomycorhizal infection and isoflavonoid accumulation in soybean roots. Plant Physiol. Biochem. 27:679-701
88. Mosse, B. 1956. Fructifications of an Endogone species causing endotrophic mycorrhiza in fruit plants. Ann. Bot. 20:349-362
89. Mosse, B. 1959. The regular germination of resting ments of an Endogone sp. causing vesicular-arbuscular mycorrhiza. Trans. Bri. mycol. Soc. 42:273-286.
90. Mugnier, J. and B. Moose. 1987. VAM infection in transformed root-inducing T-DNA roots grown axenically. Phytopathology 77:1045-1050
91. Mugnier, J., and B. Moose. 1987. VAM infection in transformed root-inducing T-DNA roots grown axenically. Phytopathology 77:1045-1050
92. Nair, M.G., G.R. Safir, and J.O. Siqueira. 1991. Isolation and identification of VAM stimulatory compounds from clover (Trifolium repens) roots. Appl. Environ. Microbiol. 57:434-439
93. Osman, S.F., and W.F. Fett. 1983. Isoflavone glucoside stress metabolites of soybean leaves. Phytochemistry 22:1921-1923
94. Paula, M.A., and J.O. Siqueira. 1990. Stimulation of hyphal growth of the VAMF Gigaspora margarita by suspension cultured Pueraria phaseoloides cells and cell products. New Phytol. 115:69-75
95. Peters, N.K., and D.P.S. Verma. 1990. Phenolic compounds as regulators of gene expression in plant-microbe interactions. Mol. Plant-Microbe Interact. 3:4-8
96. Ratnayake, M., R.T. Leonard, and J.A. Menge. 1978. Root exudation in relation to supply of phosphorus and its possible relevance to myzorrhizal formation. New phytol. 81:543-552
97. Sanders, F.E. 1975. The effect of foliar applied phosphate on the mycorrhizal infection of onion roots. In F.E. Sanders, B. Moose, and P.B. Tinker (eds.), pp. 261-276. Academic Press, New York.
98. Sbrana, C., L. Avio, and M. Giovannetti. 1995. The occurrence of calcofluor and lectin binding polysaccharides in the outer wall of AMF spores. Mycol. Res. 99:1249-1252
99. Schwab, S.M., J.A. Menge, and R.T. Leonard. 1983. Comparison of stages of VAM formation in sudangrass grown at two levels of phosphorus nutrition. Amer. J. Bot. 70:1225-1232
100. Siqueira, J.O., and D.H. Hubbell. 1982. Spore germination and germ tube growth of a VAM fungus in vitro. Mycologia 74:952-959.
101. Siqueira, J.O., D.M. Sylvia, J. Gibson, and D.H. Hubbell. 1985. Spores, germination, and germ tubes of VAMF. Can. J. Bot. 31:965-972
102. Siqueira, J.O., G.R. Safir, and M.G. Nair. 1991. Stimulation of VAM formation and growth of white clover by flvaonoid compounds. New Phytol. 118:87-93
103. Smith, S.E., B.J. St John, F.A. Smith, and J.L. Bromley. 1986. Effects of mycorrhizal infection on plant growth, nitrogen and phosphorus nutrition in glasshouse-grown Allium cepa L. New Phytol. 103:359-373
104. St-Arnaud, M., C. Hamel, B, Yimard, M. Caron, and J. Fortin. 1996. Enhanced hyphal growth and spore production of the arbuscular mycorrhizal fungus Glomus intraradices in an in virto system in the absence of host roots. Mycol. Res. 100: 328-332
105. Strullu, D.G., and C. Romand. 1986. Methode d’obtention d’endomycorhizes a vesicules et arbuscules en conditions axeniques. Compt. Rend. Hebd. Séance Acad. Sci. 303:245-250
106. Sylvia, D.M., and L.H. Neal. 1990. Nitrogen affects the phosphorus response of VA mycorrhiza. New Phytol. 115:303-310
107. Thompson, J.P. 1986. Soilless culture of VAM of cereals: effects of nutrient concentration and nitrogen source. Can. J. Bot. 64:2282-2294
108. Tommerup, I.C., and D.K. Kidby. 1980. Production of aseptic spores of VA endophytes and their viability after chemical and physical stress. Appl. Environ. Microbiol. 39:1111-1119
109. Tsai, S.M., and D.A. Phillips. 1991. Flavonoids released naturally from alfalfa promote development of symbiotic Glomus spores in vitro. Appl. Environ. Microbiol. 57:1485-1488
110. Van Ettien, H.D. 1976. Antifungal activity of ptercarpans and other selected isoflavonoids. Phytochemistry 15:655-659
111. Walker, C. 1983. Taxonomic concepts in Endogonaceae: spore wall characteristics in species descriptions. Mycotaxon 18:443-445
112. Walley, F.L., and J.J. Germida. 1996. Failure to decontaminate Glomus clarum NT4 spores is due to spore wall-associated bacteria. Mycorrhiza 6:43-49
113. Watrud, L.S., J.J. Heithaus, and E.G. Jaworski. 1978. Evidence for production of inhibition by the VAMF Gigaspora margarita. Mycologia 70:821-827
114. Xie, Z., J. Muller, A. Wiemken, W.J. Broughton, and T. Boller. 1997. Nod factors and tri-indobenzoic acid stimulate mycorrhizal colonization and affect carbohydrate partitioning in mycorrhizal roots of Lablab prupureus. New Phytol. 139:361-366
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 13. 李大中。〈後冷戰時期美國飛彈防禦政策─爭辯與邏輯〉。《問題與研究》,39卷5期。民國89年5月,頁17-45。
2. 15. 李黎明。〈美國對新世紀中共戰爭思維之假設:『不對稱戰爭』概念之發展〉。《共黨問題研究》,26卷3期。民國89年3月,頁23-32。
3. 12. 宋學文。〈從『美日新防衛合作指針』與『三不政策』探討台灣對中共之安全策略〉。《戰略與國際研究》,1卷4期。1999年10月,頁21-54。
4. 11. 宋學文。〈21世紀美─『中』─台三角關係的持續與轉變:美國對台安全策略之形成、鬆動與轉變〉。《戰略與國際研究》,3卷3期。2001年7月,頁82-115。
5. 9. 吳建德。〈兩岸軍事戰略發展之比較研究〉。《共黨問題研究》。22卷10期。85年10月,頁51-91。
6. 5. 伍世文。〈國防安全新挑戰〉。《戰略與國際研究》,2卷4期。民國89年10月,頁15-34 。
7. 4. 丁樹範。〈當前台灣海峽兩岸軍事情勢之分析〉。《問題與研究》,31卷8期。民國81年8月,頁29-39。
8. 16. 沈明室。〈改革開放後共軍軍事思想的轉變〉。《共黨問題研究》,21卷6期。民國84年6月,頁70-78。
9. 7. 艾向榮。〈21世紀共軍在亞太地區之角色─中共軍隊未來發展〉。《共黨問題研究》,23卷1期。民國86年1月,頁12-26。
10. 3. 丁樹範。〈後冷戰時期中共與亞太地區之和平與安全〉。《國際關係學報》,8期。民國82年6月,頁25-39。
11. 2. 丁樹範。〈中國大陸國防工業及其軍事力量的意涵〉。《問題與研究》,39卷3期。民國89年3月,頁1-17。
12. 45. 蔡裕明。〈中共對核武擴散問題的立場〉。《遠景季刊》,1卷3期。民國89年7月,頁113-140。
13. 44. 蔡明彥。〈從淨評估看東亞安全〉。《戰略與國際研究》,3卷3期。2001年7月,頁58-81。
14. 42. 廖文中。〈中共空軍戰略及武器裝備現代化概況〉。《中共研究》,34卷5期。民國89年5月,頁87-99。
15. 41. 廖文中。〈中共21世紀海軍戰略對亞太區域安全之影響〉。《中共研究》,34卷6期。民國89年6月,頁66-76。