跳到主要內容

臺灣博碩士論文加值系統

(35.168.110.128) 您好!臺灣時間:2022/08/16 07:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蕭伊珊
論文名稱:水溫、氨-氮及亞硝酸-氮對台灣鮑魚(Haliotisdiversicolorsupertexta)免疫反應之影響
論文名稱(外文):Effects of water temperature, ammonia-N and nitrite-N on the immune responses of Taiwan abalone, Haliotis diversicolor supertexta
指導教授:鄭文騰鄭文騰引用關係
指導教授(外文):Winton Cheng
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:熱帶農業研究所
學門:農業科學學門
學類:一般農業學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
中文關鍵詞:鮑魚吞噬作用清除作用超氧離子酚氧化酵素亞硝酸溫度
外文關鍵詞:abalonephagocytosisclearance efficiencysuperoxidase anionphenoloxidaseammonia-Nnitrite-Ntemperature
相關次數:
  • 被引用被引用:3
  • 點閱點閱:652
  • 評分評分:
  • 下載下載:127
  • 收藏至我的研究室書目清單書目收藏:3
本研究主要在探討環境變化和台灣鮑魚(Haliotis diversicolor supertexta)免疫抗病力之間的關係。
首先,探討暴露在水溫20℃、24℃、28℃及32℃中的台灣鮑魚,分別於0、24、72、120小時觀測其免疫因子,包括血球細胞之酚氧化酵素活性、超氧離子濃度、總血球數、吞噬作用及清除作用能力等,接著觀察注射弧菌Vibrio parahaemolyticus於鮑魚體內進行攻擊試驗後的死亡率。結果顯示暴露在20℃和24℃的台灣鮑魚的抗病力較佳。在28℃及32℃時台灣鮑魚的抗病力明顯降低。PO活性在32℃活性明顯減弱,在20℃時隨暴露時間增長而增加。暴露在32℃和20℃中達24小時後,總血球數量明顯較實驗初期增加。在20℃下O2-變化和PO活性呈負向關係,吞噬和清除能力在120小時後都會恢復且趨於穩定。在較低水溫下免疫活性因子具有適應與調節之現象。
暴露在濃度分別為0.01 mg/l、1.08 mg/l、3.16 mg/l、5.37 mg/l及10.04 mg/l之不同氨-氮溶液中,分別於0、24、72、120小時觀察台灣鮑魚的免疫抗病反應。結果發現經注射感染Vibrio parahaemolyticus後,死亡率隨暴露濃度的增加而增高。PO活性除濃度1.08 mg/l組在120小時後會回升外,其餘三組PO活性皆顯著降低。O2-含量在3.16 mg/l 以上濃度組皆顯著升高,10.04 mg/l濃度組於暴露72小時後明顯下降回穩,但含量仍高於實驗初期,吞噬作用和清除作用能力皆隨暴露濃度的增加而明顯減弱。
在暴露濃度分別為0.02 mg/l、0.96 mg/l、2.85 mg/l、5.03 mg/l及10.16 mg/l之亞硝酸-氮溶液中,分別於0、24、72、120小時觀察台灣鮑魚的免疫抗病反應,結果發現經攻擊感染後,暴露於10.16 mg/l濃度下的台灣鮑魚死亡率顯著地升高。各濃度組PO活性在24小時後會顯著地升高,2.85 mg/l以上之各濃度組,隨暴露時間增長而下降,但活性仍明顯高於實驗初期;O2-則隨暴露時間增長與亞硝酸-氮濃度增加而升高,吞噬作用和清除能力,皆隨暴露濃度升高而降低。血球之吞噬作用能力與體內清除作用能力,可作為環境中氨-氮和亞硝酸-氮造成緊迫時之健康指標。
This study aims at investigating the effects of water temperature, ammonia-N and nitrite-N on the immune response of Taiwanese abalone, Haliotis diversicolor supertexta.
First examined was the immune factors of the abalone, including phenoloxidase activity (PO), superoxidase anion (O2-), total blood cells, phagocytosis, and clearance efficiency when the abalone was exposed to different water temperatures at 20, 24, 28 and 32℃ for 0, 24, 72 and 120 hours. The mortality rates were determined after the abalone was challenged with an injection of Vibrio parahaemolyticus. The results showed that the abalone had a higher disease resistance after being exposed to the water temperature at 20 and 24℃. However, the disease resistance significantly decreased at 28 and 32℃ (p<0.05). The PO activity was significantly declined at 32℃, but increased at 20℃ when the exposure time was prolonged. After being exposed for 24 hours at 20 and 32℃, the total blood cell counts of the abalone significantly increased as compared with the initial counts taken at the beginning of the treatment. There was an inverse relationship found between the O2- concentration and the PO activity at 20℃. Both of the phagocytosis and the clearance efficiency were recovered after 120 hours and remained stable thereafter. At the lower water temperatures, the immune response of the abalone appeared to be better adaptable.
The immune response of the abalone was determined when it was exposed to ammonia-N solution at concentrations of 0.01 mg/l, 1.08 mg/l, 3.16 mg/l, 5.37 mg/l and 10.04 mg/l for 0, 24, 72 and 120 hours. After challenging with V. parahaemolyticus, the mortality rate of the abalone increased with the increase of the concentration of ammonia-N solution. The PO activity decreased when the abalone was exposed to the ammonia-N solution, except at the concentration of 1.08 mg/l, where the PO activity recovered after 120 hours. The O2- concentration significantly increased when the abalone was exposed to ammonia-N solution at all the concentrations above 3.16 mg/l, except at 10.04 mg/l. The O2- concentration decreased at 10.04 mg/l after 72 hours and remained at a stable condition. However, this concentration was still higher than the initial concentration determined at the beginning of the treatment. Both of the phagocytosis and the clearance efficiency decreased with the increase of the ammonia-N concentrations.
The immune response of the abalone was determined when it was exposed to nitrite-N solution at concentrations of 0.02 mg/l, 0.96 mg/l, 2.85 mg/l, 5.03 mg/l and 10.16 mg/l for 0, 24, 72 and 120 hours. After challenging with V. parahaemolyticus, the mortality rate of the abalone increased at the nitrite-N concentration of 10.16 mg/l. The PO activity at all of the concentrations of nitrite-N increased after 24 hours. However, the activity at the concentrations above 2.85 mg/l decreased with the increase of the exposure time. Despite the decrease, this activity was still higher than the initial activity measured at the beginning of the treatment. The O2- concentration increased with the increase of both of the exposure time and the nitrite-N concentration. The phagocytosis and the clearance efficiency decreased with the increase of the nitrite-N concentration. The phagocytosis and the clearance efficiency could be used as health indicators for the abalone under the stress of ammonia-N and nitrite-N.
目錄
中文摘要 ………………………………………………….. Ⅰ
英文摘要 ………………………………………………….. Ⅳ
誌謝 ………………………………………………….. Ⅶ
目錄 ………………………………………………….. Ⅷ
表目錄 ………………………………………………….. Ⅹ
圖目錄 ………………………………………………….. XI
第一章 前言…………………………………………….. 1
第二章 文獻整理……………………………………….. 5
第三章 材料方法……………………………………….. 24
1. 實驗用台灣鮑魚…………………………… 24
2. 實驗環境條件之調控……………………… 25
3. 實驗設計………………………………….... 26
4. 攻擊試驗………………………………….... 28
5. 台灣鮑魚免疫因子之分析………………… 29
第四章 結果………………………………….................. 34
1. 台灣鮑魚暴露於不同水溫下對免疫抗病之影響...…………………………………......... 34
2. 不同濃度氨-氮對台灣鮑魚免疫抗病能力之影響……………………………………… 39
3. 不同濃度亞硝酸-氮對台灣鮑魚免疫抗病 能力之影響………………………………... 44
第五章 討論………………………………….................. 49
一、 物理環境因子之溫度變化對台灣鮑魚免疫因子響………………………………… 49
二、 不同之氨-氮濃度對台灣鮑魚免疫抗病的影響………………………………………. 53
三、 不同之亞硝酸-氮濃度對台灣鮑魚免疫抗病之影響……………………….................. 55
第六章 結論………………………………….................. 58
參考文獻 ………………………………….......................... 60
圖與表 ………………………………….......................... 81
附錄 ………………………………….......................... 99
作者簡介 ………………………………….......................... XII
表目錄
Table 1. Susceptibility of Haliotis diversicolor supertexta to Vibroio parahaemolyticus in different temperature levels at 30±1 ppt…………………… 81
Table 2. Effects of different temperature levels on the THC (total haemocyte count) in Haliotis diversicolor supertexta…………………………………............ 82
Table 3. Susceptibility of Haliotis diversicolor supertexta to Vibroio parahaemolyticus in different concentrations of ammonia-N(mg L-1) at 26±1℃.. 83
Table 4. Effects of different concentrations (mg L-1) of ammonia-N on the THC (total haemocyte count) in Haliotis diversicolor supertext……………… 84
Table 5. Susceptibility of Haliotis diversicolor supertexta to Vibroio parahaemolyticus in different concentration of nitrite-N (mg L-1) at 26±1℃…… 85
Table 6. Effects of different concentrations (mg L-1) of nitrite-N on the THC (total haemocyte count) in Haliotis diversicolor supertexta…………………. 86
圖目錄
Fig 1. Mean (±SE). Phenoloxidase activity in the hemocyte of Haliotis diversicolor supertexta at the beginning and after 24, 72 and 120 hours exposure to different temperature levels, each bar represents mean value from six determinations with standard error……………………………………………….. 87
Fig 2. Mean (±SE). Superoxidase activity in the hemocyte of Haliotis diversicolor supertexta at the beginning and after 24, 72 and 120 hours exposure to different temperature levels, each bar represents mean value from six determinations with standard error……………………………….......................... 88
Fig 3. Mean (±SE). Phagocytic activity (%) in the haemocytes of Haliotis diversicolor supertexta, which was challenged with Vibrio parahaemolyticus at the beginning and after 24, 72 and 120 hours exposure to different temperature levels………………………………........................ 89
Fig 4. Mean (±SE). Clearance efficiency in the hemocyte of Haliotis diversicolor supertexta, which was challenged with V. parahaemolyticusat at the beginning and after 24, 72 and 120 hours exposure to different temperature levels……………………. 90
Fig 5. Mean (±SE). Phenoloxidase activity in the hemocyte of Haliotis diversicolor supertexta at the beginning and after 24, 72 and 120 hours exposure to different ammonia-N concentrations, each bar represents mean value from six determinations with standard error………………………………... 91
Fig 6. Mean (±SE). superoxidase concentration in the hemocyte of Haliotis diversicolor supertexta at the beginning and after 24, 72 and 120 hours exposure to different Ammonia-N concentration, each bar represents mean value from six determinations with standard error………………………………... 92
Fig 7. Mean (±SE). Phagocytic activity (%) in the haemocytes of Haliotis diversicolor supertexta, which was challenged with Vibrio parahaemolyticus at the beginning and after 24, 72 and 120 hours exposure to different concentration of ammonia-N (0.01, 1.08, 3.16, 5.37 and 10.04 mg L-1) …………………………………………… 93
Fig 8. Mean (±SE). Clearance efficiency in the hemocyte of Haliotis diversicolor supertexta, which was challenged with V. parahaemolyticusat at the beginning and after 24, 72 and 120 hours exposure to different ammonia-N concentration (mg/l)……………………………………………... 94
Fig 9. Mean (±SE). Phenoloxidase activity in the hemocyte of Haliotis diversicolor supertexta at the beginning and after 24, 72 and 120 hours exposure to different nitrite-N concentration, each bar represents mean value from six determinations with standard error………………………………... 95
Fig 10. Mean (±SE). superoxidase activity in the hemocyte of Haliotis diversicolor supertexta at the beginning and after 24, 72 and 120 hours exposure to different nitrite-N concentration, each bar represents mean value from six determinations with standard error………………………………... 96
Fig 11. Mean (±SE). Phagocytic activity (%) in the haemocytes of Haliotis diversicolor supertexta, which was challenged with Vibrio parahaemolyticus at the beginning and after 24, 72 and 120 hours exposure to different concentration of nitrite-N (0.02, 0.96, 2.85, 5.03 and 10.16 mg L-1) ………………………………………………... 97
Fig 12. Mean (±SE). Clearance efficiency in the hemocyte of Haliotis diversicolor supertexta, which was challenged with V. parahaemolyticusat at the beginning and after 24, 72 and 120 hours exposure to different nitrite-N concentration (mg/l)……………………………………………… 98
王少元,2000。溶藻弧菌對養殖台鮑魚之致病性研究。國立台灣海洋大學水產養殖研究所碩士論文。
王渭賢,1995。二枚貝類血淋巴液及血球凝集蛋白之研究。國立中興大學獸醫研究所碩士論文。
王渭賢,1999。免疫促進物-聚醣類 (glycans or polysaccharides)在水生動物疾病防治之應用。生命科學簡訊,13(4):16-19。
王靜嫻,2001。硫酸銅、高錳酸鉀及四級胺對淡水長臂大蝦免疫反應之影響。國立屏東科技大學熱帶農業研究所碩士論文。
台灣省農林廳漁業局,1976。中華民國台灣地區漁業年報,p.104。
台灣省農林廳漁業局,1997。中華民國台灣地區漁業年報,p.114, 246。
曲敬正,1981。九孔(Haliotis diversicolor supertexta) 繁養殖之基礎研究。國立台灣大學動物學研究所碩士論文。
朱永桐、葉信利、丁雲源,1991。增溫對養殖物越冬之影響。台灣省水產試驗所試驗報告,50:157-171。
江永棉、賴春福,1976。九孔之嗜食性研究。中國水產,284:6-7。
何美青,2000。斑節蝦受到外界環境氨與亞硝酸影響下之緊迫反應研究。國立台灣海洋大學水產養殖系碩士論文。
周一中、丁雲源,1987。九孔苗致死溶氧試驗。台灣省水產試驗所試驗報告,43:193-197。
林德彥,1996。飼料中添加藻粉對九孔幼貝成長之研究。國立台灣大學漁業科學研究所碩士論文。
金紘昌,1997。溫度刺激下草魚(Ctenopharyngodon idella)腺核苷磷酸類化合物代謝之研究。國立台灣大學漁業科學研究所碩士論文。
張堯、宋延齡,1993。甲殼類血球細胞的免疫功能及其交互作用。中國水產月刊,483:7-14。
郭銘元,1998。溫刺激對淡水長臂大蝦醣類代謝酵素活性變化的影響。國立台灣大學漁業科學研究所碩士論文。
陳弘成、楊鴻禧,1979。九孔之人工繁殖。中國水產,314:3-9。
陳威志,1998。台灣鮑魚稚貝對溫度、鹽度之忍受性、氮排泄及成長之研究。國立海洋大學水產養殖研究所碩士論文。
陳建名,1995。草蝦暴露於不同氨濃度下對其氮排泄與組織中精氨酸酶及麩氨酸去氫酶比活性之影響。國立台灣海洋大學水產養殖系碩士論文。
陳炳州,1998。螺旋藻與龍鬚菜藻粉及其脂質抽出物對九孔成長之影響。國立台灣大學漁業科學研究所碩士論文。
陳盈村,1999。養殖台灣鮑魚弧菌症研究。國立台灣海洋大學水產養殖學系碩士論文。
陳勝香,1985。陸上養殖九孔與繁殖技術之改進。豐年,35(13):22-23。
彭秀琴,1980。花蓮產九孔(Haliotis diversicolor supertexta) 年齡及成長的研究。國立台灣大學海洋研究所碩士論文。
曾文陽,1985。鮑魚養殖學。前程出版社。台北。台灣。
曾萬年,1976。台灣九孔貝生產生殖生態之研究。台灣水產學會刊,5(1):24-32。
黃秋雁,1995。九孔。台灣農家要覽-漁業篇,豐年社,p.256-259。
黃貴民,1992。不同餌料與放養密度對九孔成長之影響。中國水產,470:27-34。
黃貴民,1998。鮑全程經濟養殖。水產出版社。台北。台灣。p.334。
黃貴民,1998。鮑魚養殖學。行政院農業委員會編印。台北。台灣。
黃貴民,2000。台灣鮑養殖產業經濟與技術因素之分析。國立台灣海洋大學漁業科學學系博士論文。
楊美桂、羅竹芳、扈伯爾、郭光雄,1978。新竹養殖文蛤病源菌Vibrio parahaemolyticus 之分離。 JCRR. Fisheries series, NO.34。
楊鴻禧、丁雲源,1984。台灣南部養殖九孔可行性之探討,台灣省水產試驗所試驗報告,37:145-154。
楊鴻禧、丁雲源,1986。九孔繁殖及養殖試驗。台灣省水產試驗所試驗報告,40:195-201。
楊鴻禧、丁雲源,1989。九孔陸上養殖池生產力之研究。台灣省水產試驗所試驗報告,46:215-223。
楊鴻禧、丁雲源,1989。九孔養殖。台灣省政府農林廳,p.22。
楊鴻禧、丁雲源,1990。九孔陸上養殖法專輯。台灣省水產試驗所台南分所,p.45。
劉光明、陳威克,1999。飼養密度及深度效應對多層次養殖九孔成長之影響評估。台灣省水產學會會刊,26(1):23-33。
劉莉蓮,1983。溫度與鹽度對九孔致死的研究。國立中山大學海洋生物研究所碩士論文。
蔡英雅、張英、魏若飛,1997。軟體動物貝類學概論。水產出版社。台北。台灣。 p.268。
賴竹蘭,1991。鹽度及懸浮物之急遽變化對九孔孔活存之影響。台灣省水產試驗所試驗報告,50:267-276。
駱秋燕、陳茂松,1984。總蛋白質對九孔成長之影響。台灣省水產試驗所試驗報告,36:143-149。
戴仁祥,1988。台東成功區九孔之資源生物學。國立台灣大學漁業科學研究所碩士論文。
Abbas, A. K., A. H. Lichtman and J. S. Pober, 1994. In: Saunders, W. B. (ed.), Cellular and molecular immunology. Co., Philadelphia. USA.
Adema, C. M., W. P. M. van der Knapp and T. Sminia, 1991. Molluscan haemocyte-mediated cytotoxicity: the role of reactive oxygen intermediates. Reviews in Aquat. Sci. 4: 210-223.
Afonso, C. D. B., 2000. Biochemical responses in penaeids caused by contaminants. Aquaculture. 191:163-186.
Anderson, J. J., A. Okubo, A. S. Robbins and F. A. Richards, 1982. A model for nitrite and nitrate distribution in oceanic oxygen minimum zones. Deep-Sea Res. 29:1113-1140.
Anderson, R. S., 1996. Production of reactive oxygen intermediates haeemocytes. Immunological significance. In: Söderhäll, K., Sadaaki, I., Vasta, G. (eds.), New Directions in Invertebrate Immunology. SOS Publications. Fair Haven. pp.109-129.
Anderson, R. S., L. M. Oliver and L. L. Brubacher, 1992. Superoxide anion generation by Crassostrea virginica hemocytes as measured by nitroblue tetrazolium reduction. J. Invertebr. Pathol. 59:303-307.
Arillo, A., C. Margiocco, F. Melodia, P. Mensi and G. Schenone, 1981. Ammonia toxicity mechanism in fish: Studies on rainbow trout (Salmo gairdneri Rich). Ecotox. Environ. Saf. 5:316-328.
Armstrong, D. A., M. J. Stephenson and A. W. Knight, 1976. Acute toxicity of nitrite to larvae of the giant Malysian prawn, Macrobrachium rosenbergii. Aquaculture. 9:39-46.
Ashida, M. and H. I. Yamazaki, 1990. Biochemistry of the phenoloxidase system in insects: with special reference to activation. In: Ohnishi, E. and M. Ishizaki (eds.), Molting and Metamorphosis. Sci. Soci. Tokyo: Japan. pp.239-265. (Press)
Ashida, M., Y. Ishizaki and H. Iwahana, 1983. Activation of prophenoloxidase by bacterial cell walls or β-1,3-glucans in plasma of the silkworm Bombyx mori. Biochem. Biophys. Res. Commun. 113:562-568.
Asokan, R., M. Arumugam and P. Mullainadhan, 1997. Activation of prophenoloxidase in the plasma and hemocytes of the marine mussel Perna viridis Linnaeus. Dev. Comp. Immunol. 21:1-12.
Asokan, R., M. Arumugam and P. Mullainadhan, 1998. Functional analysis of plasma prophenoloxidase system in the marine mussel Perna viridis. Comp. Biochem. Physiol. A120: 753-762.
Asoken, R., M. Arumugan and P. Mullainahan, 1997. Activation of prophenoloxidase in the plasma and haemocytes of the marine mussel Perna viridis Cinnaeus. Developmentive immunology. 21(1):1-12.
Babior, B. M., R. S. Kipnes and T. Curnette, 1973. Biological defence system. The production by leukocytes of superoxide, a potential acetricidal agent. J. Clin. Invest. 52:741-744.
Bachere, E., E. Mialhe and J. Rodriguez, 1995. Identification of defence parameters in the haemolymph of crustacean with particular reference to the shrimp Penaeus japonicus (Bate), prospects and application. Fish Shellfish Immunol. 5: 597-612.
Bachere, E., E. Mialhe and J. Rodriguez, 1995. Identification of defence parameters in the shrimp Penaeus japonicus, prospects and application. Fish Shellfish Immunol. 5: 597-612.
Baldo, B. A., W. H. Sawyer and R. V. Stick, 1978. Purification and characterization of a galactan-reactive agglutinin from the clam tridacna maxima (Roding) and study of its combining site. Biochem. J. 175:467-477.
Barbuddhe, S. B., S. V. S. Malik and K. G. Lavleen, 1998. Effect of in vitro monocyte activation by Listeria Monocytogenes antigens on phagocytosis and production of reactive oxygen and nitrogen radicals in bovines. Veterinary Immunology and Immunopathology. 64:149-195.
Bayne, C. J., 1990. Phagocytosis and non-self recognition in invertebrates. Phagocytosis appears to be an ancient line of defense. Biosci. 40:723-731.
Bell, K. L. and V. J. Smith, 1993. In vitro superoxide production by hyaline cells of the shore crab Carcinus maenas (L.). Dev. Comp. Immunol. 17:211-219.
Bendschneider, K. and R. J. Robinson, 1952. Anew spectrometric method for the determination of nitrite in the sea water. J. Mar. Res. 11:87-96.
Barton, B. A. and G. K. Iwama, 1991. Physiological changes in fish from stress in aquaculture with emphasis on the response and effects of corticosteroids. Ann. Rev. Fish Dis. 1:3-26.
Brown, C. and G. Roland, 1984. Characterization of exotoxin produced by a shellfish-pathogenic Viobrio sp. J. Fish Dis. 7:117-126.
Calybrook, D. L., 1983. Nitrogen metabolism. Internal Anatomy and Physiological Regulation. In: Mantel, L.H. (ed.), The biology of Crustacean. Vol. 5. Academic Press. New York. 5:163-213.
Carballo, M., M. J. Munoz, M. Cullar and J. V. Tarazona, 1995. Effects of waterborne copper, cyanide, ammonia, and nitrite on stress parameters and changes in susceptibility to saprolegniosis in rainbow trout (Oncorhynchus mykis). Appl. Environ. Microbiol. 61:2108-2112.
Carl, J. S., 1990. Principal Diseases of Marine Fish and Shellfish. Volume 2. Second Edition. Academic Press, Inc.
Chen, J. C. and F. H. Nan, 1992. Effect of ambient ammonia on ammonia-N excretion and ATPase activity of Penaeus chinensis. Aquat. Toxicol. 23:1-10.
Chen, J. C. and S. Y. Cheng, 1993. Urea excrent by Penaeus japonicus Bate exposed to different concentration of ambient ammonia. J. Exp. Mar. Biol. Ecol. 173:1-9.
Chen, J. C. and Y. Z. Kou, 1992. Effects of ammonia on growth and molting of Penaeus japonicus juveniles. Aquaculture. 104:249-260.
Chen, J. C., C. T. Chen and S. Y. Cheng, 1994a. Nitrogen excretion and changes of hemocyanin, protein and free amino acid level in hemolymph of Penaeus monodon exposed to different concentration of ambient ammonia-N at different salinity level. Mar. Ecol. Prog. Ser. 110:85-94.
Chen, J. C., S. Y. Cheng and C. T. Chen, 1994b. Changes of haemocyanin, protein and free amino acid levels in haemolymph of Penaeus japonicus exposed to ambient ammonia. Comp. Biochem. Physiol. 109A:339-347.
Chen, J. H., 1996. Hemolymph collection in abalone (Holitis diversicolor). Acta. Zool. Taiwan. 7:61-71.
Cheng, T. C. and A. Cali, 1974. Am electron microscope study of the fate of bacteria phagocytized by granulocytes of Crassostrea virginica. Contemp. Top. Immunobiol. 4:25-35.
Cheng, T. C., 1988. In vivo effects of heavy metals on cellular defense mechanisms of Crassostrea virginica: phagocytic and endocytotic indices. J. Invertebr. Pathol. 5:215-220.
Cheng, W. and J. C. Chen, 2000. Effect of pH, temperature and salinity on immune parameters of the freshwater prawn Macrobrechium rosenbergii. Fish Shellfish Immunol. 10:387-391.
Cheng, W. and J. C. Chen, 2001. Effects of intrinsic and extrinsic factors on the haemocyte profile of the prawn, Macrobrachium rosenbergii. Fish Shellfish Immunol. 11:53-63.
Cheng, W. and J. C. Chen, 2002. The virulence to freshwater prawn Macrobrachium rosenbergii and its immune resistance under ammonia stress. Fish Shellfish Immunol. (in press)
Cheng, W. and J. C. Chen, 1998. Isolation and charactweization of Enterococcus-like bacterium causing muscle necrosis and mortality in Marcrobrachium rosenbergii in Taiwan. Dis. Aquat. Org. 34:93-101.
Chisholm, J. R. S. and V. J. Smith, 1994. Variation of antibacterial activity in the haemocytes of the shore crab, Carcinus maenas, with temperature. J. mar. Biol. Assoc. U. K. 74:979-982.
Clot, J. E. and D. A. Armstrong, 1981. Nitrogen toxicity to crustaceans, fish and mollusks. Proceeding of Bio-Enginerring Symposium for Fish Culture. In: Allen, L. J. and E. Kinney (eds.), American Fisheries Society and Northease Society of Conservation Enginerrs. Bethesda. MD. pp.34-37.
Coles, J. A. and R. K. Pipe, 1994. Phenoloxidase activity in the haemolymph and haemocytes of the marine mussel Mytilus edulis. Fish Shellfish Immunol. 4:337-352.
Coles, J. A., S. R. Farley and R. K. Pipe, 1994. Effect of fluoranthene on the immunocompetence of the common marine mussel, Mytilus edulis. Aquat. Toxicol. 30:367-379.
Collvin, L., 1985. The effect of copper on growth. Food consumption and food conversion of perch, Perca fluviatilis (L.), offered maximal food rations. Aquat. Toxicol. 6:105-113.
Dean, J. M. and F. J. Vernberg, 1996. Hypothermia and the blood of crabs. Comp. Biochem. Physiol. 17B:19-22.
Di Guilio, R. T., P. C. Washburn, R. J. Wenning, G. W. Winston and C. S. Jewell, 1989. Biochemical responses in aquatic animals: a review of determinants of oxidative stress. Environ. Toxicol. Chem. 8:1103-1123.
Eddy, F. B. and E. M. Williams, 1987. Nitrite and fresh fish. Chem. Ecol. 3:1-38.
Elston, R., 1983. Histopathology of oxygen intoxication in the juvenile red abalone, Haliotis rufescens Swainson. J. Fish Dis. 6:101-110.
Feng, S. Y. and J. S. Feng, 1974. The effect of temperature on cellular reactions of Crassostrea virginica to the injection of avian erythrocytes. J. Invertebr. Pathol. 23:22-37.
Feng, S. Y. and J. S. Feng, 1974. The effect of temperature on cellular reactions of Crassostrea virginica to the injection of avian erythrocytes. J. Invertebr. Pathol. 23:22-37.
Feng, S. Y., 1988. Cellular defense mechanisms of oysters and mussels. In: Maryland, W. (ed.), Disease Processes in Marine Bivalve Molluscs. USA. 18:153-168.
Fisher, W. S., 1986. Structure and function of oyster hemocytes. In: Brehelin, M. (ed.), immunity in invertebrates. Springr-Verlag, Berlin. Germany. pp.25-35.
Foely, D. A. and T. C. Cheng, 1972. Interaction of mollusks and foreign substances: the morphology and behavior of hemolymph cells of the American oyster, Crassostrea virginica, in vitro. J. Invertebr. Pathol. 19:383-394.
Foley, D. A. and T. C. Cheng, 1975. A quantitative study of phagocytosis by hemolymph cells of the pelecypods, Crassostrea virginica and Mercenria mercentrea. J. Invertebr. Pathol. 25:189-197.
Friebel, B. and L. Renwrantz, 1995. Application of density gradient centrifugation for separation of eosinophilic and basophilic hemocytes from Mytilus edulis and characterization of both cell groups. Comparative biochemistry and physiology. 112(1):81-90.
Fromm, P. O. and J. R. Gillette, 1968. Effect of ambient ammonia on blood ammonia and nitrogen excretion of rainbow trout (Salmo gairdneri). Comp. Biochem. Physiol. 26:887-896.
Fryer, S. E. and C. J. Bayne, 1996. Phagocytosis of letax beads by Biomphalaria glabrata hemocytes is modulated in a strainspecific manner by adsorbed plasma components. Dev. Comp. Immunol. 20:23-37.
Greenaway, P., 1991. Nitrogenous excretion in aquatic and terrestrial Crustacea. Mem. Queensland Mus. 31:215-227.
Grundy, M. M., N. A. Ratcliffe and M. N. Moore, 1996. Immune Inhibition in Marine Mussels by Polycyclic Aromatic Hydrocarbons. Marine Environmental Res. 42:187-190.
Harris, J. O., S. J. Maguire, S. J. Edwards and S. M. Hindrum, 1997. Effect of nitrite on growth and oxygen consumption for Juvenile greenlip abalone, Haliotis laevigata Donovan. J. Shellfish Res. 16:395-401.
Hernández-López, J. T., F. Gollas-Galván and Vargas-Albores, 1996. Activation of the prophenoloxidase system of the brown shrimp (Penaeus californiensis Holmes). Comp. Biochem. Physiol. 113:61-66.
Hinsch, G. W. and M. Hunte, 1990. Ultrastructure of phagocytosis by hemocytes of the American oyster. In: Pathology in Marine Science. Academic Press, Inc. CA. USA. pp.479-483.
Holmblad, T. and K. Södërhall, 1999. Cell adhesion molecules and antioxidative enzymes in a crustacean, possible role in immunity. Aquaculture. 172:111-123.
Jensen, F. B., 1995. Uptake and effects of nitrite and nitrate in animals. In: Walsh, P. J. and P. Wright (eds.), Nitrogen Metabolism and Excretion. CRC Press. Boca Raton. FL. pp. 289-303.
Johansson, M. W., K. Södërhall and K. Södërhall, 1989. A cell adhesion factor from crayfish hemocytes has degranulating activity towards crayfish granular cells. Insect Biochem. 2:183-190.
Johnson, P. T., 1980. Histology of blue Crab. Callinects sapidus: A Model for Decapoda. Praeger. New York. pp.440.
Kinne, O., 1963. The effect of temperature and salinity on marine and brackish water animals. I. Temperature. Oceanogr. Mar. Biol. Annu. Rev. 1:301-340.
Knoph, M. B. and K. Thorud, 1996. Toxicity of ammonia to atlantic salmon (Salmo salar L.) in seawater-effects on plasma osomalality, ion, ammonia, urea and glucose levels and hematologic parameters. Comp. Biochem. Physiol. 113A: 375-381.
Le Gall, G., E. Bachère and E. Mialhe, 1991. Chemiluminescence analysis of the activity of Pecten maximus hemocytes stimulated with zymosan and host-specific rickettsiales-like organisms. Dis. Aquat. Org. 11:181-186.
Le Mollullac, G. and P. Haffner, 2000. Emvironmental factors affecting immune responses in crustancea. Aquaculture. 191:121-131.
Le Moullac, G., C. Soyez, D. Saulinier, D. Ansquer, J. C. Avarre and P. Levy, 1998. Effect of hypoxia stress on the immune response and the resistance to vibriosis of the shrimp Penaeus stylirostris. Fish Shellifish Immunol. 8:621-629.
Lee, K. K., P. C. Liu, Y. C. Chen and C. Y. Huang, 2001. The implication of ambient temperature with the outbreak of vibriosis in cultured small abalone Haliotis diversicolor supertexta Lischke. J. Thermal Biol. 26:585-587.
Leonard, C., K. Söderhäll and N. A. Ratliffe, 1985. Studies on prophenoloxidase and protease activity of Blaberus craniifer haemocytes. Insect. Biochem. 15:803-810.
Lewis, W. M. Jr. and D. P. Morris, 1986. Toxicity of nitrite to fish: a review. Trans. Am. Fish. Soc. 115:183-195.
Liu, C. I., J. P. Hsu and M. S. Chien, 1996a. Studies on pathogenicity of yeast in cultured shrimp. COA Fish. Dis. Res. 17:15-24.
Liu, P. C., K. K. Lee, K. C. Yii, G. H. Kou and S. N. Chen, 1996b. Isolation of vibrio harveyi from diseased Kuruma prawns Penaeus japonicus. Curr. Microbiol. 33:129-132.
Martin, Y., 1976. Importance des bacteries chez les mollusques bivalves Haliotis. 7:97-103.
Matsumoto, K. and Y. Tongu, 1996. Effects of eyestalkectomy on the leucopoietic organ of a crab. Tokyo Zool. Mag. 75:203-206.
Mazeaud, M. M., F. Mazeaud and E. M. Donaldson, 1997. Primary and secondary effects of stress in fish: some new data with a general review. Trans Am Fish Soc. 106:201-212.
McCormick-Ray, M. G. and T. Howard, 1991. Morphology and mobility of oyster hemocytes: evidence for seasonal variations. J. Invertebr. Pathol. 58:219-230.
McDade, J. E. and M. R. Tripp, 1967. Lysozyme in the hemolymph of the oyster Crassostrea virginica. J. Invertebr. Patheol. 9:531-535.
McDade, J. E. and M. R. Tripp, 1967. Mechanism of agglutination of red blood cells by oyster hemocyte. J. Invertebr. Pathol. 9:523-530.
Mckim, J. M. and D. A. Benorr, 1971. Effects of long-term exposure to copper on survival, growth, and reproduction of brood trout (Salvelinus fontinalis). J. Fish. Res. Board. Can. 28:655-662.
Mikulski, C. M., L. E. Burnett and K. G. Burnett, 2000. The effects of hypercapnic hypoxic on the survival of shrimp challenged with Vibro parahaemolyticus. J. Shellfish Res., 19:301-311.
Moore, J. D., T. T. Robbins and C. S. Friedman, 2000. Withering syndrome in farmed red abalone Haliotis rufescens: thermal induction and association with gastrointestinal rickettsiales-like prokaryotes. J. Aquat. Anim. Heal. 12:26-34.
Mugnier, C., A. Fostier, S. Guezzo, J. L. Gagnon and L. Quemener, 1998. Effect of some repetitive factors on turbot stress response. Aqua. Int. 6:33-45.
Muki, S. and A. Neori, 1996. The integrated culture of seaweed, abalone, fish and clams in modular intensive land-based systems: I. proportions of size and projected revenues. Aqua. Eng. 15(5):313-326.
Munoz, M., R. Cedeno, J. Rodriguez, W. P. W. Van der Knaap, E. Mialhe and E. Bachere, 2000. Measurement of reactive oxygen intermediate production in haemocytes of the penaeid shrimp, Penaeus vannamei. Aquaculture. 191:89-107.
Nishimori, E., O. Hasegawa, T. Numata and H. Wakabayashi, 1998. Vibrio carchariae causes mass mortalities in Japanese abalone, Sulculus diversicolor supratexta. Fish Pathol. 33:495-502.
Nottage, A. S. and T. H. Birkbreck, 1987b. Production of proteinase during experimental infection of Ostrea edulis L. larvae with Vibrio alginolyticus NCMB 1339 and the antigenic relationship between proteinase produced by marine vibrios pathogenic for fish and shellfish. J. Fish Dis. 10:265-273.
Odo, S., K. Kamino, S. Kanai, T. Maruyama and S. Harayama, 1995. Biochemical characterization of a Ca2+-dependent lectin from the hemolymph of a photosymbiotic marine bivalve, Tridacan derasa. J. Biochem. 117:965-973.
Olive, L. M. and W. S. Fisher, 1995. Comparative form and function of oyster Crassostrea virginica Hemocytes from Chesapeake bay and Apalachicola bay (Florida). Dis. Aquat. Org. 22:217-225.
Olivier, B. and M. Mathieu, 1999. Inorganic nitrogen and its effect on growth of the abalone Haliotis tuberculata Linnaeus and the sea urchin Paracentrotus lividus Lamarck. Aquaculture. 174:95-107.
Pickering, A. D., 1981. Introduction: The concept of biological stress. In: Pickering, A.D. (ed.), Stress and Fish. Academic Press. London and New York. pp.1-10.
Pipe, R. K. and J. A. Coles, 1995. Environmental contaminants influencing immune function in marine bivalve mollusks. Fish Shellfish Immunol. 5:581-595.
Pipe, R. K., 1992. Generation of reactive oxygen metabolites by the haemocytes of the mussel, Mytilus edulis. Dev. Comp. Immunol. 16:111-122.
Racotta, I. S. and H. H. Roberto, 2000. Metabolic responses of the white shrimp, Penaeus vannamei, to ambient ammonia. Comp. Biochem. Physiol. 125A:437-443.
Ratcliffe, N. A., A. F. S. Rowley, Fitzgerald and W. C. P. Rhodes, 1985. Invertebrate immunity: basic concepts and recent advances. Int. Rev. Cytol. 97:183-350.
Regnault, M., 1987. Nitrogen excretion in marine and freshwater crustacean. Biol. Rev. 62:1-24.
Rodrìguez, J. and G. Le Moullac, 2000. State of the art of immunological tools and health control of penaeid shrimp. Aquaculture. 191:109-119.
Ross, E. M., 1989. Signal sorting and amplification through G protein-coupled receptors. Neuron. 3:141-152.
Ruddel, C. K., 1971. The fine structure of oyster agranular amebocytes from regenerating mantle wounds in the pacific oyster, Crassostrea gigas. J. Invertebr. Pathol. 18: 260-268.
Sadok, S., R. Uglow and S. J. Haswell, 1995. Fluxes of haemolymph ammonia and free amino acids in Mytilus edulis exposed to ammonia. Mar. Ecol. Prog. Ser. 129:177-187.
Saul, S. J., L. Bin and M. Sugumaran, 1987. The majority of prophenoloxidase in the hemolymph of Manduca Sexta is present in the plasma and not in the hemocytes. Dev. Comp. Immunol. 11:479-485.
Sharma, B. and R. C. Ahlert, 1977. Nitrification and nitrogen removal. Water Res. 11:879-925.
Sindermann, C. J., 1988. Molluscan disease. In: sindermann, C. J., D. V. Ligtner (eds.), Disease diagnosis and control in North American marine aquaculture. Elsevier. Amsterdam. pp.266-316.
Sindermann, C. J., 1996. Ocean pollution and shellfish diseases. In: Sindermann, C.J. (ed.), Ocean Pollution: Effects on living resources and Hunmans CRC press. Boca Raton. FL. pp.63-81.
Smith, V. J., R. J. Swindlehurst, P. A. Johnston and A. D. Vethaak, 1995. Disturbance of host defence and capability in the common shrimp Carngon carngon by exposure to harbour dredge spoils. Aquatic Toxicology. 32:43-58.
Söderhäll, K. and L. Cerenius, 1998. Role of prophenoloxidase activating system in invertebrate immunity. Curr. Opin. Immunol. 10:23-28.
Söderhäll, K. and V. J. Smith, 1983. Separation of the hemocyte populations of Carcinus maenas and other marine decapods, and pro-phenoloxidase distribution. Dev. Comp. Immunol. 7:229-239.
Söderhäll, K., L. Häll, T. Unestam and L. Nyhlén, 1979. Attachment of phenoloxidase to fungal cell walls in arthropod immunity. J. Invertebr. Pathol. 34:285-294.
Solozrano, L., 1969. Determination of ammonia in nature water by phenolhypochloride method. Limnol. Oceanogr. 25:751-754.
Song, Y. L. and Y. T. Hsieh, 1994. Immunostimulation of tiger shrimp (Penaeus monodon) hemocytes for generation of microbicidal substances: analysis of reactive oxygen species. Dev. Comp. Immunol. 18:201-209.
Spark, A. K., 1963. Biochemical changes following malathion treatment in the freshwater Indian catfish, Heteropneustes fossilizes. J. Adv. Zool. 14:103-108.
Stauber, L. A., 1950. The fate of India ink injected intracardially into the oyster, Ostrea edulis (Gmelin). Biol. Bull. 98:227-241.
Stormer, J., F. B. Jensen and J. C. Rankin, 1996. Uptake of nitrite, and bromide in rainbow trout, Oncorhynchus mykiss: effects on ionic balance. Can. J. Fish. Aquat. Sci. 53:1943-1950.
Surresh, K. and A. Mohandas, 1990. Number and types of hemocytes in Sunetta scripta and Villorita cyprinodes var. cochinensis (Bivalve), and leukocytosis subsequest to bacterial challenge. J. Invertebr. Pathol. 55:312-318.
Sutton, D. C. and R. Garrick, 1993. Bacterial disease of culture giant clam Tridancna gigas larvae. Dis. Aquat. Org. 16:47-53.
Tabate, K., 1962. Toxicity of ammonia to aquatic animals with reference to the effects of pH and carbon dixide. Bull. Tokyo Reg. Fish. Res. Lab. 34:67-74.
Tomasso, J. R., 1994. Toxicity of nitrogenous wastes to aquaculture animals. Rev. Fish. Sci. 2:291-314.
Truscott, R. and K. N. White, 1990. The influence of metal and temperature stress on the immune system of crabs. Funct. Ecol. 4:455-461.
Tubiash, H. S. and S. V. Otto, 1986. Bacterial problems in oysters: a review. Pathology in marine aquaculture. In: Vivares, C. P., J. R. Bonami and E. Jasper (ed.), European Aquaculture Society, Special Pub l. NO.8. Breden. pp.233-242.
Tubiash, H. S., P. E. Chanley and E. Leifson, 1965. Bacillary necrosis, a disease of larval and juvenile bivalve mollusks. I. etiology and epizootiology. J. Bacteriol. 90:1036-1044.
Vernberg, F. J. and Piyatitivorakul, 1998. Effect of salinity and temperature on the bioenergeties of adult stage of shrimp (Palaemonets pugio Holthuis) from the North Inlet Estuary, south Carolina. Oceangraphic Literature Review. 45(8):1407.
Waiwlld, K. G. and F. W. G. Beamish, 1978. The effect of copper, hardness and pH on the growth of rainbow trout, Salmo gairdneri. J. Fish. Biol. 13:591-598.
Wang, W. S. and D. H. Wang, 1996. Use of glycans to increase resistance of bighead carp, Arisichthys nobilis, and milkfish, Chanos chanos, to bacterial infections. Taiwan J. Vet. Med. Anim. Husb. 66(2):83-91.
Wedemeyer, G. A. and W. T. Yasutake, 1978. Prevention and treatment of nitrite toxicity in juvenile steelhard trout (salmo gairdneri). J. Fish. Res. Bd. Can. 35:822-827.
Wickins, J. F., 1976. The tolerance of warm-water prawns to recirculated water. Aquaculture. 9:19-37.
Wilkie, M. P., H. E. Simmons and C. M. Wood, 1996. Physiological adaptations of rainbow trout to chronically elevated water pH (pH=9.5). J. Exp. Zool. 274:1-14.
Winston, G. W., M. N. Moore, M. A. Kirchin and C. Soverchia, 1996. Production of reactive oxygen species by hemocytes from the marine mussel, Mytilus edulis: lysosomal localization and effect of xenobiotics. Comp. Biochem. Physiol. 113(2):221-229.
Young, J. S. and J. B. Pearce, 1975. Shell disease in crabs and lobsters from New York Bight. Mar. Pollu. Bull. 6:101-105.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top