跳到主要內容

臺灣博碩士論文加值系統

(3.239.4.127) 您好!臺灣時間:2022/08/20 07:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:曾逸旻
研究生(外文):I-Min Tseng
論文名稱:雙二茂鐵烷硫化合物自身吸附於金(111)表面與金簇上之研究
論文名稱(外文):Studies of Self-Assembled Biferrocenyl Alkanethiol Monolayers on Au (111) Surface and on Gold Clusters.
指導教授:董騰元
指導教授(外文):Teng-Yuan Dong
學位類別:碩士
校院名稱:國立中山大學
系所名稱:化學系研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:146
中文關鍵詞:雙二茂鐵硫醇化合物金簇自然形成單層
外文關鍵詞:gold clusterself-assembled monolayerbiferrocene alkanethiol
相關次數:
  • 被引用被引用:0
  • 點閱點閱:151
  • 評分評分:
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:3
對於單層薄膜的研究上,我們利用具有二個氧化還原中心的雙二茂鐵烷硫化合物7 (BfC5 and BfC8)與直鏈烷硫化合物共吸附於金(111)表面上,以電化學分析儀測定,發現其穩定且具有二個可逆的氧化還原波,其電位差皆小於一個電子的理論電位差(59 mV),另外掃描速率與電流值呈線性關係,均證實其具有典型單層薄膜氧化還原性質,而電子傳遞方式為direct controlling 。更進一步,欲利用此SAM性質將雙二茂鐵烷硫化合物建構於奈米粒子上,成為一有用之奈米材料。首先合成出規格化的雙二茂鐵烷硫化合物之金奈米粒子10 (AuC8BfC8 and AuC8BfC5),再以傳統化學儀器NMR、IR、TEM、UV/Vis、CV等鑑定,證明雙二茂鐵烷硫化合物的確鍵結於金簇上,可溶於非極性溶劑中,而由電化學測定,發現其電化學行為與SAM性質相似,電子傳遞方式亦為direct controlling,且為一穩定化合物。未來將導入混價系統,使其成為有價值之分子開關。
We examine the electrochemical properties of SAM of alkanethiols terminated with biferrocenyl group (complex 7) to understand the interactions between metal surface and molecules.
The cyclic voltammogram of complex 8 shows two successive reversible one-electron redox waves corresponding to the oxidation of the biferrocenyl moiety and all peak-to-peak separations are smaller than 59 mV (ideal value of one electron transfer with diffusing controlling). In addition, the peak currents are linear to scan rate, i.e., iαV. This observation is corresponding to the electrochemical property of SAM, and we would like to suggest that the electron transfer process in the electrochemical measurements is direct controlling.
Furthermore, we synthesized a nano-material by using of redox stable biferrocenylalkanethiol attached to gold cluster (complex 10). The clusters are stable in air, soluble in nonpolar organic solvents and the characters could be examining by traditional chemical instruments such as NMR, IR, UV/Vis, TEM. The cyclic voltammogram shows that the electron transfer process in the electrochemical measurements is also direct controlling.
Finally, the well-known mechanism of intramolecular electron transfer in mixed-valence biferroceniums and the stable biferrocene on Au (111) surface and on gold clusters let to the more advanced concept. We believe that the microstructure of biferrocene assembled on an electrode surface or on gold clusters might enable to carry out a particular function extraordinarily well, for example, optical switch.
Table of Contents
List of FiguresⅣ
List of SchemesⅥ
List of TablesⅥ
List of ChartsⅥ
List of AppendixesⅥ
Chapter 1 Introduction1
1-1 Preface1
1-2 Molecular Self-Assembled Monolayer3
1-3 SAM of Ferrocene7
1-3-1 The Model of Alkanethiol Monolayer7
1-3-2 The Model of Ferrocene-Terminal
Alkanethiol Monolayer8
1-3-3 Coadsorption of Ferrocene-Terminal and
Unsubstituted Alkanethiols on Au (111)10
1-3-4 Determinations on Coverage13
1-3-5 Nonpolar Ferrocene-Terminal Alkanethiol
on Au (111)16
1-4 Gold Clusters of Biferrocene19
1-4-1 Synthesis of Thiol-Derivatised Gold Clusters19
1-4-2 Characterizations of Gold Clusters22
1-4-3 Biferrocene-Modified Gold Clusters23
1-5 Goals30
Chapter 2 Experimental Section32
2-1 Chemicals32
2-2 Synthesis34
2-2-1 General Information34
2-2-2 Synthesis of Compound (5a)36
2-2-3 Synthesis of Compound (5b)37
2-2-4 Synthesis of Compound (6a)39
2-2-5 Synthesis of Compound (6b)40
2-2-6 Synthesis of Compound (7a)40
2-2-7 Synthesis of Compound (7b)42
2-2-8 Preparation of SAM Electrode (8)43
2-2-9 Synthesis of Alkanethiol Gold Cluster (9)43
2-2-10 Heating Treatment of Gold Cluster 45
2-2-11 Synthesis of Biferrocene Gold Cluster (10b)47
2-2-12 Synthesis of Biferrocene Gold Cluster (10c)48
2-3 Physical Methods50
Chapter 3 Results and Discussion57
3-1 Cyclic Voltammetric Studies of Compounds 7a-b and 8a-b57
3-1-1 Electrochemical Behavior of Compounds 7a-b57
3-1-2 Electroactive Behavior of Compounds 8a-b59
3-1-3 Dilute Experiment61
3-1-4 Determinations on Coverage65
3-1-5 The Method of Electron Transfer67
3-1-6 Rate Constant for Electron-Transfer74
3-2 Characteristics of Compounds 9a-b84
3-2-1 TEM Imaging84
3-2-2 UV/Vis Measurement84
3-2-3 13C NMR Spectra87
3-3 Physical Properties of Compounds 10b-c90
3-3-1 TEM Imaging90
3-3-2 IR Spectra Analysis90
3-3-3 13C NMR Spectra94
3-3-4 1H NMR Spectra 94
3-3-5 UV/Vis Measurement98
3-3-6 Electrochemical Behavior of Compounds 10b-c98
3-4 Comparison of Compounds 7a-b, 8a-b, and 10b-c on
Electrochemical Data107
Chapter 4 Conclusions110
Chapter 5 Outlook for Future Studies112
References113
Appendix118

List of Figures
Figure 1. The preparation of SAM4
Figure 2. The structure of SAM5
Figure 3. Schematic illustration of possible chain packing in SAM9
Figure 4. CV of FcCO2(CH2)11SH and CH3(CH2)9SH various
mole fraction (χFc) of the ferrocene-terminal thiol11
Figure 5. Ferrocene surface charge density and coverage in
the adsorption solution15
Figure 6. CV of Fc(CH2)16SH and CH3(CH2)15SH various mole
fraction (χFc) of the ferrocene-terminal thiol17
Figure 7. TEM micrograph of a decanethiol-encapsulated Au cluster24
Figure 8. FTIR spectra for nanoparticles of the 5 nm and 2 nm core
sizes24
Figure 9. UV/Vis spectra for Au clusters evolved from the
heating treatment25
Figure 10. Preparation of biferrocenoyl gold clusters26
Figure 11. CV of biferrocenoyl gold clusters28
Figure 12. Schematic diagram for three electrode system54
Figure 13. Schematic diagram for electrochemical
measurements on SAM56
Figure 14. CV of BfC5 (7a) and BfC8 (7b)58
Figure 15. CV of Au(111)BfC5 (8a) and Au(111)BfC8 (8b)60
Figure 16. CV of BfC5 and CH3(CH2)4SH various mole
fraction (χbifc) of the biferrocene-terminal thiol63
Figure 17. CV of BfC8 and CH3(CH2)7SH various mole
fraction (χbifc) of the biferrocene-terminal thiol64
Figure 18. CV of BfC5 coverage in the adsorption solution66
Figure 19. CV of BfC8 coverage in the adsorption solution68
Figure 20. Peak current of BfC5 vs. the square of scan rate71
Figure 21. Peak current of BfC8 vs. the square of scan rate72
Figure 22. Peak current of 1st redox wave of Au(111)BfC5
vs. scan rate73
Figure 23. Peak current of 2nd redox wave of Au(111)BfC5
vs. scan rate75
Figure 24. Peak current of 1st redox wave of Au(111)BfC8
vs. scan rate76
Figure 25. Peak current of 2nd redox wave of Au(111)BfC8
vs. scan rate77
Figure 26. Peak-to-peak separation of 1st redox wave
vs. mole fraction (χbifc) of the Au(111)BfC580
Figure 27. Peak-to-peak separation of 2nd redox wave
vs. mole fraction (χbifc) of the Au(111)BfC581
Figure 28. Peak-to-peak separation of 1st redox wave
vs. mole fraction (χbifc) of the Au(111)BfC882
Figure 29. Peak-to-peak separation of 2nd redox wave
vs. mole fraction (χbifc) of the Au(111)BfC883
Figure 30. TEM imaging of AuC885
Figure 31. UV/Vis spectra of AuC886
Figure 32. 13C NMR spectra of 1-octanethiol and AuC888
Figure 33. TEM imaging of AuC8BfC8 and AuC8BfC591
Figure 34. FTIR spectra of AuC8, BfC8 and AuC8BfC892
Figure 35. FTIR spectra of AuC8, BfC5 and AuC8BfC593
Figure 36. 13C NMR spectra of AuC8, BfC8 and AuC8BfC896
Figure 37. 13C NMR spectra of AuC8, BfC5 and AuC8BfC597
Figure 38. 1H NMR spectra of AuC8, BfC8 and AuC8BfC898
Figure 39. 1H NMR spectra of AuC8, BfC5 and AuC8BfC599
Figure 40. UV/Vis spectra of AuC8, AuC8BfC8 and AuC8BfC5100
Figure 41. CV of AuC8BfC8 and AuC8BfC5102
Figure 42. Peak current of AuC8BfC8 vs. scan rate103
Figure 43. Peak current of AuC8BfC5 vs. scan rate104
Figure 44. CV of AuC8BfC8 and AuC8BfC5 with repeating scanning106
List of Schemes
Scheme 1. Preparation of complex 735
Scheme 2. Preparation of complex 844
Scheme 3. Preparation of complex 9 and 1046
List of Tables
Table 1. Electron transfer rate constant of 8a and 8b79
Table 2. Electrochemical data of 7, 8 and 10108
List of Charts
Chart 1. Schematic diagram for goal31
List of Appendixes
Figure 1A. The 1H NMR spectrum of complex 5a118
Figure 2A. The 1H NMR spectrum of complex 5b119
Figure 3A. The 1H NMR spectrum of complex 6a120
Figure 4A. The 1H NMR spectrum of complex 6b121
Figure 5A. The 1H NMR spectrum of complex 7a122
Figure 6A. The 13C NMR spectrum of complex 7a123
Figure 7A. The 1H-1H NMR spectrum of complex 7a124
Figure 8A. The 1H-13C NMR spectrum of complex 7a125
Figure 9A. The 13C-13C NMR spectrum of complex 7a126
Figure 10A. The 1H NMR spectrum of complex 7b127
Figure 11A. The 13C NMR spectrum of complex 7b128
Figure 12A. The 1H-1H NMR spectrum of complex 7b129
Figure 13A. The 1H-13C NMR spectrum of complex 7b130
Figure 14A. The 13C-13C NMR spectrum of complex 7b131
Figure 15A. The 1H NMR spectrum of 1-octanethiol132
Figure 16A. The 13C NMR spectrum of 1-octanethiol133
Figure 17A. The 1H-1H NMR spectrum of 1-octanethiol134
Figure 18A. The 1H-13C NMR spectrum of 1-octanethiol135
Figure 19A. The 13C-13C NMR spectrum of 1-octanethiol136
Figure 20A. The 1H NMR spectrum of AuC8 (1~5 nm)137
Figure 21A. The 1H NMR spectrum of AuC8 (~4.4 nm)138
Figure 22A. The 13C NMR spectrum of AuC8 (~4.4 nm)139
Figure 23A. The 1H NMR spectrum of AuC8BfC8140
Figure 24A. The 13C NMR spectrum of AuC8BfC8141
Figure 25A. The 1H NMR spectrum of AuC8BfC5142
Figure 26A. The 13C NMR spectrum of AuC8BfC5143
Figure 27A. The Mössbauer spectra of mix-valence of 7a and 7b144
Figure 28A. The EPR spectra of mix-valence of 7a and 7b145
Table 1A. The data of EPR and Near-IR of mix-valence
of 7a and 7b146
Refences
1. Nuzzo, R. G.; Laibinis, P. E.; Whitesides, G. M.; Allara, D. L.; Tao, Y.-T.; Parikh, A. N. J. Am. Chem. Soc. 1991, 113, 7152.
2. Ulman, A. Chem. Rev. 1996, 96, 1533.
3. Kaifer, A. E.; Zhang, L.; Godinez, L. A.; Lu, T.; Gokel, G. W. Angew. Chem. Int. Ed. Engl. 1995, 34, 2.
4. Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D. J.; Whyman, R. J. Chem. Soc. Chem. Commun. 1994, 801.
5. Chidsey, C. E. D.; Bertozzi, C. R.; Putvinski, T. M.; Mujsce, A. M. J. Am. Chem. Soc. 1990, 112, 4301.
6. Chidsey, C. E. D.; Loiacono, D. N. Langmuir. 1990, 6, 682.
7. Chidsey, C. E. D. Science 1991, 251, 919.
8. Standard rate constants are calculated as recommended by Laviron in the quasireversible case assuming α=1/2.
9. Laviron, E. J. Electroanal. Chem. 1979, 101, 19.
10. Murry, R. W.; Chidsey, C. E. D. J. Phys. Chem. 1986, 90, 1479.
11. Smalley, J. F.; Feldberg, S. W.; Chidsey, C. E. D.; Linford, M. R.; Newton, M. D.; Liu, Y. —P. J. Phys. Chem. 1995, 99, 13141.
12. Porter, M. D.; Walczak, M. D.; Popenoe, D. D.; Deinhammer, R. S.; Lamp, B. D.; Chung, C. Langmuir 1991, 7, 2687.
13. Hussey, C. L.; He, Z.; Bhattacharyya, S.; Cleland Jr, W. E. J. Electroanal. Chem. 1995. 397. 305.
14. Fox, M. A.; Collard, D. M. Langmuir 1991, 7, 1192.
15. Takehara, K.; Takemura, H. Bull. Chem. Soc. Jpn. 1995, 68, 1289.
16. Uosaki, K.; Sato, Y.; Kita, H. Langmuir 1991, 7, 1510.
17. Nishihara, H.; Horikoshi, T.; Itoh, M.; Kurihara, M.; Kubo, K. J. Electroanal. Chem. 1999, 473, 113.
18. Murry, R. W.; Templeton, A. C.; Wuelfing, W. P. Acc. Chem. Res. 2000, 33, 27.
19. Murry, R. W.; Hostetler, M. J.; Wingate, J. E.; Zhong, C.-J.; Harris, J. E.; Vachet, R. W.; Clark, M. R.; David Londono. J.; Green, S. J.; Stokes, J. J.; Wignall, G. D.; Glish, G. L.; Porter, M. D.; Evans, N. D. Langmuir 1998, 14, 17.
20. Murry, R. W.; Ingram, R. S.; Hostetler, M. J. J. Am. Chem. Soc. 1997, 119, 9175.
21. Andres, R. P.; Bielefeld, J. D.; Henderson, J. I.; Janes, D. B.; Kolagunta, V. R.; Kubiak, C. P.; Mahoney, W. J.; Osifchin, R. G. Science 1996, 273, 1690.
22. Murry, R. W.; Terrill, R. H.; Postlethwaite, T. A.; Chen, C. —H.; Poon, C. —D.; Terzis, A.; Chen, A.; Hutchison, J. E.; Clark, M. R.; Wignall, G.; Londono, J. D.; Superfine, R.; Falvo, M.; Johnson Jr, C. S.; Samulski, E. T. J. Am. Chem. Soc. 1995, 117, 12537.
23. Reven, L.; Badia, A.; Gao, W.; Singh, S.; Demers, L.; Cuccia, L. Langmuir 1996, 12, 1262.
24. Zhong, C.-J.; Maye, M. M.; Zheng, W.; Leibowitz, F. L.; Ly, N. K. Langmuir 2000, 16, 490.
25. Vlckova, B.; Smova, I. S. Nano Lett. 2002, 2, 2.
26. Whetten, R. L.; Alvarez, M. M.; Khoury, J. T.; Schaaff, T. G.; Shafigullin, M. N.; Vezmar, I. J. Phys. Chem. B 1997, 101, 3706.
27. Murry, R. W.; Hostetler, M. J.; Stokes, J. J. Langmuir 1996, 12, 3604.
28. Murry, R. W.; Hostetler, M. J.; Green, S. J.; Stokes, J. J. J. Am. Chem. Soc. 1996. 118. 4212.
29. Vijayamohanan, K.; Aslam, M.; Mulla, I. S. Langmuir 2001, 17, 7487.
30. Murry, R. W.; Green, S. J.; Stokes, J. J.; Hostetler, M. J.; Pietron, J. J. Phys. Chem. B 1997, 101, 2663.
31. Schmid, G.; Pfeil, R.; Boese, R.; Bandermann, F.; Meyer, S.; Calis, G. H. M.; Velden, JW. A. Chem. Ber. 1981, 114, 3634.
32. Nishihara, H.; Yamada, M.; Quiros, I.; Mizutani, J.; Kubo, K. Phys. Chem. Chem. Phys. 2001, 3, 3377.
33. Nishihara, H.; Yamada, M.; Kuzume, A.; Kurihara, M.; Kubo, K. Chem. Commun. 2001. 2476.
34. Nishihara, H.; Men, Y.; Kubo, K.; Kurihara, M. Phys. Chem. Chem. Phys. 2001, 3, 3427.
35. Nishihara, H.; Yamada, M.; Kubo, K. Chemistry Letters 1999, 1335.
36. Dong, T. —Y.; Chang, C. —K.; Cheng, C. —H.; Lin, K. —J. Organmetallics 1999, 18, 1911.
37. Fish, R. W.; Rosenblum, M. J. Org. Chem. 1965, 30, 1253.
38. Rausch, M. D. J. Org. Chem. 1961, 26, 1802.
39. Kim, K.; Han, S. W.; Seo, H.; Chung, Y. K. Langmuir 2000, 16, 9493.
40. Hussey, C. L.; Sabapathy, R. C.; Bhattacharyya, S.; Cleland, W. E. Langmuir 1998, 14, 3797.
41. Yamamoto, M.; Katayama, H.; Maruyama, S.; Ito, S.; Tsujii, Y.; Tsuchida, A. J. Phys. Chem. 1991, 95, 3480.
42. Swinehart, J. S. Organic Chemistry: An Experimental Approach; Prentice-hall: New Jersey, 1969; p 150.
43. Zhong, C.-J.; Maye, M. M. J. Mater. Chem. 2000, 10, 1895.
44. Chen, H. —Y.; Hu, X. —Y.; Xiao, Y. Chemical Research in Chinese Universities. 2001, 2, 159.
45. Murphy, C. J.; Jana, N. R.; Gearheart, L. Langmuir 2001, 17, 6782.
46. Nishihara, H.; Yamada, M.; Tadera, T; Kubo, K. Langmuir 2001, 17, 2363.
47. Tseng, I. —M.; Chang, L. —S.; Dong, T. —Y. ”Electroactive Self-Assembled Biferrocenyl Alkanethiol Monolayers on Au (111) Surface and on Gold Cluster”, 中國化學年會. 28-30 Dec. 2001, P-1-IN-004. (Poster)
48. Gopel, W.; Schierbaum, K. D.; Weiss, T.; Thoden, E. U.; Engbersen, J. F. J. Science 1994, 265, 1413.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top