跳到主要內容

臺灣博碩士論文加值系統

(3.239.4.127) 您好!臺灣時間:2022/08/20 06:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡啟堂
研究生(外文):Chi-Tang Tasi
論文名稱:五氯酚分解菌之生理特性探討
論文名稱(外文):Characterization of bacteria degrading pentachlorophenol
指導教授:劉仲康劉仲康引用關係
指導教授(外文):Jong-Kang Liu
學位類別:碩士
校院名稱:國立中山大學
系所名稱:生物科學系研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:122
中文關鍵詞:微生物降解生物復育五氯酚
外文關鍵詞:Pseudomonas mendocinamicrobial degradationPCPpentachlorophenolbioremediation
相關次數:
  • 被引用被引用:20
  • 點閱點閱:181
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:3
五氯酚(PCP)為一含氯之苯環化合物。其廣泛地被使用於木材、皮革等之防腐,並普遍地存在於煉焦、煉油、石化等工業廢水中。因為五氯酚化學性質安定並具有高毒性,一旦散佈在環境中將造成長期的環境污染。本研究係探討生物處理方式來整治五氯酚污染的可行性。結果顯示除吸附現象外,現場土壤菌液組(好氧培養) 經過90天後可將五氯酚降解完(0.62 mg/L/day)。外加醋酸鈉、糖蜜及污泥餅可以增加五氯酚降解速率(醋酸鈉:4.15 mg/L/day、糖蜜:1.05 mg/L/day、污泥餅:0.83 mg/L/day)。但其餘各組,包括好氧污泥組、厭氧污泥組、現場土壤(厭氧培養) 組、及鐵還原組,無論是否外加碳源在各自經過長達135、174、250和124天後五氯酚皆無降解。在篩選現場土壤後,分離純化出一株能以五氯酚做為唯一碳源的菌株,經鑑定後和Pseudomonas mendocina有98%相似度,菌株名稱定為Pseudomonas mendocina NSYSU。Pseudomonas mendocina NSYSU在40 ppm五氯酚下降解速率為9.33 mg/L/day,降解延滯期隨著五氯酚濃度上升而增加。在五氯酚濃度達320 mg/L時,儘管Pseudomonas mendocina NSYSU仍可存活,其分解五氯酚能力卻被完全抑制。添加醋酸鈉及葡萄糖時五氯酚降解速率各為8.11 mg/L/day、7.55 mg/L/day,顯示添加該碳源並無法促進五氯酚降解。由各種環境因子影響五氯酚降解的實驗得知,分解五氯酚最適條件為:30℃、pH 6及好氧條件。為了進一步了解五氯酚降解時所產生代謝物的情形,在五氯酚降解時以GC-MASS偵測代謝產物並同時檢測氯離子濃度。實驗第6天,可以GC-MASS偵測到五氯酚之代謝產物為醋酸,同時溶液中氯離子濃度增加21.8 mg/L,與實驗初始五氯酚所含總氯量(66.6%)相當。此結果顯示五氯酚可為Pseudomonas mendocina NSYSU完全分解。
Pentachlorophenol (PCP) is a chloride-containing aromatic compound which is mostly used for preserving wood and leather, but still one can easily detect this compound present in the waste water generated by various industries such as petrifaction, oil-refining, and etc. PCP, due to its chemical property of being stable and highly toxic, would cause severe and irreparable environmental pollution once exposed to open air. This study is intended to explore the feasibility of dealing the problem of PCP with biodegradation. The examination results showed that, except for absorption, the suspension of contaminated soil (aerobic incubation), nonetheless, could effectively degrade PCP during a period of 90 days without the aid of any extra carbon source. (0.62 mg/L/day). The degradation rate was further greatly improved by adding sodium acetate, molasses, and sludge cake (sodium acetate added: 4.15 mg/L/day; molasses added: 1.05 mg/L/day; sludge cake added:0.83 mg /L/day). None of four experimental groups of aerobic sludge, anaerobic sludge, contaminated soil (anaerobic incubation), and Fe3+reaction could degrade PCP after 135 days, 174 days, 250 days, and 124 days, respectively, regardless of whether any sources of carbon were added or not. A bacterium which used PCP as the sole carbon source was isolated from the contaminated soil. After 16s rDNA sequence analysis, it had 98% degree of similarity to Pseudomonas mendocina and was designated as Pseudomonas mendocina NSYSU. The PCP (40 mg/L) degradation rate of Pseudomonas mendocina NSYSU was 9.33 mg/L/day, and the degradation rate would slow down as PCP concentration increased. At a PCP concentration of 320 mg/L, PCP degradation was completely inhibited, although an active population of Pseudomonas mendocina NSYSU was still present in these cultures. The study also indicated that the addition of various carbon sources such as sodium acetate and glucose did not facilitate the degradation of PCP with the degradation rate of 8.11 mg/L/day for sodium acetate, and that of 7.55 mg/L/day for glucose. Analysis from examining several environmental factors showed that the optimal condition for PCP degradation is that of 30℃, pH6, and in the presence of oxygen. The end products of PCP degradation were detected by GC-MS. After 6 days of incubation, PCP was gradually disappeared and the metabolic intermediate product, acetic acid was detected. The chloride ion concentration also increased by 21.8 mg/L, which is approximately equal to the original total chloride content in PCP (66% of chloride content). In conclusion, PCP could be effectively and completely degraded by Pseudomonas mendocina NSYSU.
中文摘要………………………………………………………I
英文摘要…………………………………………………….III
第一章前 言…………………………………………………1
第二章材料與方法………………………………………..13
第三章結果………………………………………………..37
第四章討論………………………………………………..48
第五章結論………………………………………………..62
圖 表………………………………………………………..64
參考文獻……………………………………………………109
行政院環保署。 1994。水污染防治法規。 p.65-110。王俊欽、李季眉、莊銘賢、黃秋蓉。 1999。2,4,6-三氯酚分解菌株之分離與特性。 第六屆海峽兩岸研討會論文集(上)。p.351-356。江文仁,潘子明,袁紹英,張碧芬。 1993。氯酚類化合物在環境中的消長,環境檢驗所環境調查年報。第一期,p.135-146。林明端,曾四恭。1992。厭氧生物流體化床法處理含氯酚廢水。 中國環境工程學刊。 2(1):1-8。阮國棟。 1984。廢水中各種酚類去除之理論與實業。 工業防治污染。 第三卷,第三期,p.88-108。張碧芬、簡正欽、袁劭英。 1999。利用厭氧生物法去除土壤中氯酚化合物之研究。 第十屆廢棄物處理技術研討會論文集。 p.149-154。黃森元、鄭幸雄、陳俊英。活性碳吸附有毒物質之研究。1991。 工業防治污染。第37期,p.19-46。雷世恩。2000。以生物處理法整治三氯乙烯及四氯乙烯之場址。國立中山大學環境工程研究所碩士論文。楊義容。1983。活性碳在工業廢水處理上之應用。 工業防治污染。 第14期,p.58-73。廖高宗。1993。氯酚化合物經河底泥中厭氧菌之生物轉化作用。 東吳大學微生物研究所碩士論文。Apajalahti, J. H. A., and M. S. Salkinoja-Salonen. 1986. Degradation of polychlorinated phenols by Rhodococcus chlorophenolicus. Appl. Microbiol. Biotechnol. 25:62-67。Apajalahti, J. H. A., and M. S. Salkinoja-Salonen. 1986. Dechlorination and para-hydroxylation of polychlorinated phenols by Rhodococcus chlorophenolicus. J. Bacteriol. 169:675-681Arcand, Y., J. Hawari, and S. R. Guiot. 1995. Solubility of pentachlorophenol in aqueous solutions: the pH effect. Wat. Res.29(1)131-136。Brummett, T. B., and G. W. Ordal. 1977. Inhibition of amino acid transport in Bacillus subtilis by uncouplers of oxidative phosphorylation. Arch. Biochem. Biophys. 178:368-372.Bridle, T. R., and A. K. Sachdev. 1984. Thermal destruction of chlorophenol residues. 38th purdue industrial waste conference proceedings, Michigan, USA. pp.299-309.Blum, D. J. W., and R. E. Speece. 1991. A database of chemical toxicity to environmental bacteria and its use in interpecies comparisons and correlations. Journal WPCF. 63(3):198-207.Corsby, D. G. 1981. Environmental chemistry of pentachlorophenol. Pure Appl. Chem. 53:1051-1080。Chu, J. P., and E. J. Kirsch. 1972. Metabolism of pentachlorophenol by an axenic bacterial culture. Appl. Microbiol. 23(5):1033-1035.Chang, B. V., C. W. Chiang, S. Y. Yuan. 1998. Dechlorination of pentachlorophenol in anaerobic sewage sludge. Chemosphere. 36(3):537-545.Eisenstadt, E., S. Fisher, C. L. Der, and S. Siliver. 1973. Manganese transport in Bacillus subtilis W23 during growth and sporulation. J. Bacteriol. 113(3):1363-1372.Edgehill, R. U., and R. K. Finn. 1982. Isolation,characterization and growth kinetics of bacteria metabolizing pentachlorophenol. Eur. J. Appl. Microbiol. Biotechnol. 16:179-184。Eckenfelder, W. W., J. Pataxzka, and A. T. Watkin. 1985. Wastewater Treatment. Chemical Enginnering. sep 2:60-70.Guthrie, M. A., E. J. Kirsch, R. F. Wukasch, and C. P. L. Grady, Jr. 1984. Pentachlorophenol biodegradation-II anaerobic. Wat. Res. 18(4):451-461.Harder, W., and L. Dijkhuizen. 1982. Strategies of mixed substrate utilization in microorganisms. Philos. Trans. R. Soc. Lond. B Biol. Sci. 297:459-480.Haggblom, M. M., L. J. Nohynek, and M. S. Salkinoja-Salonen. 1988. Degradation and O-methylation of chlorinated phenolic compounds by Rhodococcus and Mycobacterium strains. Appl. Environ. Microbiol. 54:3043-3052。Hendricksen, H. V., S. Larsen, and B.K. Ahring. 1992. Anaerobic degradation of PCP and phenol in fix-film reactor: the influence of additional substrate. Wat. Sci. Tech. 24(3/4): 431-436.Hendricksen, H. V., S. Larsen, and B.K. Ahring. 1992. Influence of a supplemental carbon source on anaerobic dechlorination of pentachlorophenol in granular sludge. Appl. Envioron. Microbiol. 58(1):365-370.Joseph J. P., M. M. Martinson, J. G. Steiert, R. E. Carlson, and R. L. Crawford. 1983. Biodegradation of photolysis of pentachlorophenol in artificial freshwater stream. Appl. Environ. Microbiol. 46(5):1024-1031.Jorens PG, Schepens PJ. 1993. Human pentachlorophenol poisoning. Hum Exp Toxicol. 12(6):479-95Kroop, R. H. 1973. Treatment of phenolic aircraft paint stripping wastewater. 28th Annual Purdue Industrial Waste Conference, Part2. Karns, J. S., J. J. Kilbane, S. Duttagupta, and A. M. Chakrabarty. 1983. Metabolism of halophenols by 2,4,5-trichlorophenoxyacetic acid-degrading Pseudomonas cepacia. Appl. Environ. Microbiol. 46:1176-1181.Kramer, C. M., and M. M. Kory. 1991. Bacteria that degrade p-chlorophenol isolation from a continuous culture system. Can. J. Microbiol. 38:34-37.Kelly A. M., H. Lee, and J. T. Trevors. 1996. Microbial degradation of pentachlorophenol. Biodegradation. 7:1-40.Kamashwaran, SR, and D. L. Crawford. 2001. Anaerobic biodegradation of pentachlorophenol in mixtures containing cadmium by two physiologically distinct microbial enrichment cultures. Journal of Industrial Microbiology and Biotechnology. 27:11-17.Mickelson, M. N. 1974. Effect of uncoupling agents and respiratory inhibitors on growth of Strptococcus agalactiae. J. Bacteriol. 120(2):733-740.Moos, L. P., E. J. Kirsch, R. F. Wukasch, and C. P. L. Grady, Jr. 1983. Pnetachlorophenol biodegradation-I. Wat. Res. 17(11):1575-1584.Mikesell, M. D., and S. A. Boyd. 1986. Complete reductive dechlorination and mineralization of pentachlorophenol by anaerobic microorganisms. Appl. Environ. Microbiol. 52(4):861-865.Mileski, G. J., J. A. Bumpus, M. A. Jurek, and S. Aust. 1988. Biodegradation of pentachlorophenol by the white rot fungus Phanerochate chrysosporium. Appl. Environ. Microbiol. 54:2885-2889。Madsen, T., and J. Aamand. 1991. Effects of Sulfuroxy anions on degradation of pentachlorophenol by methanogenic enrichment culture. Appl. Environ. Microbiol. 57(9):2453-2458.Mueller, J. G., D. P. Middaugh, S. E. Lantz, and P. J. Chapman. 1991. Biodegradation of creosote and pentachlorophenol in contaminated groundwater: chemical and biological assessment. Appl. Environ. Microbiol. 57(5):1277-1285.Madsen,T., and J. Aamand. 1992. Anaerobic transformation and toxicity of trichlorophenols in a stable enrichment culture. Appl. Environ. Microbiol. 58(9):2874-2878.Mohn, W. W., and J. M. Tiedje. 1992. Microbial reductive dehalogenation. Microbiol. Rev. p.482-507. Nyholm, N., B. N. Jacobsen, B. M. Pedersen, O. Poulsen, A. Dmborg, and B. Schultz. 1992. Removal of organic micropollutants at PPB levels in laboratory activated sludge reactors under various operating condition. Wat. Res. 26(3):339-353.O’Reilly, K. T., and R. L. Crawford. 1989. Degradation of pentachlorophenol by polyurethane-immobilized Flavobacterium cells. Appl. Environ. Microbiol. 55(9):2113-2118.Omi. A., G. Sunita, and V. K. Gupta. 1998. Sensitive spectrophotometric method for determining pentachlorophenol in various environmental samples. J. AOAC Int. 81(4):803-807.Puhakka, J. A., E. Melin, K. Jarvinen, T. Yuhkanen, and W. K. Shieh. 1991. Oxic fluidized-bed treatment of dichlorophenols. Wat. Sci. Tech. 24(3):171-177.Petra, M. R., and S. K. Schmidt. 1992. Characterization of a novel Pseudomonas sp. That mineralizes high concentration of pentachlorophenol. Appl. Environ. Microbiol. 58(9):2879-2885.Roberton, A. M., and R. S. Wolfe. 1970. Adenosine triphosphate pools in Methanobacterium. J. Bacteriol. 102:43-51. Reber, H. H., and P. Kaiser. 1981. Regulation of utilization of glucose and aromatic substrates in four strain of Pseudomonas putida. Arch. Microbiol. 130:243-247.Ruckdeschel, G., and K. Schwarz. 1987. Effects of pentachlorophenol and some of its known and possible metabolites on different species of bacteria. Appl. Environ Microbiol. 53(11):2689-2692.Rayavarapu, R., S. K. Banerji, and R. K. Bajpai. 1990. Biodegradation of PCP by Pseudomonas cepacia, p.47-62. InL. E. Erickson(ed.), Proceedings of the Conference on Hazardous Waste Research, vol. 1. Engineering Extension, Kansas State University, Manhattan.Reiner, E. A. J. C., and E. J. Kirsch. 1978. Microbial metabolism of pentacholorophenol, p.67-81. In K. Rao(ed.), Environmental science research, vol. 12. Pentacholorophenol: chemistry, pharmacology and environmental toxicology. Plenum Publishing Corp., New York。Suzuki, T. 1977. Metabolism of pentachlorophenol by a soil microbe. J.Environ. Sci. Health Part B. 12:113-127.Stanlake, G. J., and R. K. Finn. 1982. Isolation and characterization of a pentachlorophenol-degrading bacterium. Appl. Environ. Microbiol. 44:1421-1427.Saber, D.L., and R. L. Crawford. 1985. Isolation and characterization of Flavobacterium strains that degrade pentachlorophenol. Appl.Environ. Microbiol. 50:1512-1518。Steiert J. G. and Crawford. 1986. Catabolism of pentachlorophenol by a Flavobacterium sp. Biochem. biophys. res. commun. 141(2):825-830.Tam, T. Y., and J.T. Trevors. 1981. Toxicity of pentachlorophenol to Azobacter vineladdii. Bull. Environ. Contamin. Toxicol. 27:230-234.Topp, E., R. L. Crawford, and R. S. Hanson. 1988. Influence of readily metabolizable carbon on pentachlorophenol metabolism by a pentachlorophenol-degrading Flavobacterium sp. Appl. Environ. Microbiol. 54(10):2452-2459.Tokuz, R. Y. 1989. Biological treatment of chlorinated phenols using a rotating biological contactor. 43th Purdue Industrial Waste Conference Proceedings, Michigan, USA. pp.283-289.Tartakovsky, B., M.-J. Levesque, R. Dumortier, R. Beaudet, and S. R. Guiot. 1999. Biodegradation of pentachlorophenol in a continuous anaerobic reactor augmented with Desulfitobacteruim frappieri PCP-1. Appl. Environ. Microbiol. 65(10):4357-4362。Watanabe, I. 1973. Isolation of pentachlophenol decomposing bacteria from soil. Soil Sci. Plant Nutr. 19:109-116.Yang, P. Y., and T. S. See. 1991 Packed-entrapped-mixed microbial cell process for removal of phenol and its compounds. 45th Purdue Industrial Waste Conference Proceedings, Michigan, USA. pp.529-537.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊