跳到主要內容

臺灣博碩士論文加值系統

(3.238.204.167) 您好!臺灣時間:2022/08/09 22:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:韓台賢
研究生(外文):Taishien Han
論文名稱:木通萃取物對青蛙皮膜組織之通透性及短路電流之效應
論文名稱(外文):Effects of Clematis Armandi extracts on permeability and short circuit current (Isc) across frog skin epithelium
指導教授:蕭正夫
指導教授(外文):Chen-Fu Shaw
學位類別:碩士
校院名稱:國立中山大學
系所名稱:生物科學系研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:47
中文關鍵詞:木通青蛙皮膜組織通透性短路電流
外文關鍵詞:short circuit current (Isc)Clematis Armandifrog skin epithelium permeability
相關次數:
  • 被引用被引用:0
  • 點閱點閱:156
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
Summary摘要
本研究利用電壓箝制術(Voltage clamp technique)測定木通萃取物對於青蛙腹部皮膜組織離子通道活動之影響。青蛙皮膜組織膜間電位差在穩定時平均值為-42.72± 13.12mV。以電壓箝制術使皮膜兩側電位維持在0 mV時,其短路電流( short circuit current,Isc )由黏膜側到漿膜側之平均值55.37± 8.43μA。當電壓箝制於10 mV,將木通萃取物施加於黏膜側後10分鐘內,其△Isc大幅上升至84.15± 10.31μA,且此時皮膜之電導值( conductance, Gi )由1.13μS上升至2.34μS,木通萃取液施加於漿膜側(serosal side),產生的短路電流(Isc)並無明顯變異,推想在漿膜側可能不具木通作用之離子通道。
經過離子通道調控劑(ion channel modulator),amiloride(一種強烈鈉離子通道阻斷劑)於皮膜組織黏膜側處理10分鐘後,其短路電流由44.38± 8.57μA被抑制為4.13± 3.12μA。若再加入木通的萃取物其短路電流上升至25.41± 8.54μA;以電壓箝制術使膜電位上升10 mV,計算其Gi值。發現Gi值可由0.30μS上升至0.97μS。
將鈣離子通道阻斷劑( nifedipine )加入漿膜側之後,測得之△Isc為47.15± 5.49μA。以鈣離子通道阻斷劑處理之後再加入木通萃取物於黏膜側時之△Isc上升至78.39± 8.14μA,以電壓箝制術使膜電位上升10 mV,計算其Gi值,發現Gi值無顯著變化。
鈉鉀離子幫浦抑制劑(ouabain)在加入皮膜組織的漿膜側後使△Isc下降至36.58± 6.47μA,而以鈉鉀離子幫浦抑制劑處理之後加入木通萃取物於黏膜側則△Isc上升至56.43± 4.35μA,以電壓箝制術使膜電位上升10 mV,計算其Gi值,發現Gi值由1.07μS變成1.74μS。
依據上述結果可歸納出下列結論:
一、木通可作用於青蛙皮膜黏膜側使膜通透性大為提高。
二、木通造成之皮膜導電度(conductance)昇高,可能不是經由影響amiloride sensitive Na+ channel之通路造成;因木通造成之短路電流不能被amiloride 完全阻斷。
三、漿膜側 Na+-K+ pump受ouabain抑制時,仍可使木通加在黏膜側之皮膜Isc加大。除主動運輸之鈉離子之外,尚有其他非主動運輸離子流受木通之影響。
四、木通加在黏膜側所增高之Isc現象不受nifedipine (L-type Ca++ channel blocker )抑制,由此推論木通造成之短路電流不是由鈣離子所造成。可能是經由其他離子包括氯離子之流動而造成。
Summary
Clmatis Armandi has been used frequently in traditional Chinese medicine for the treatment of diuretic symptoms. The mechanism of its action is unclear. Possible action of this substance may involve alternation of electrolyte transport through the epithelia membranes. In this study,transepithelial conductance of frog skin was measured in vitro in voltage-clamped Ussing chambers. Adding Clematis Armandi extracts to apical surface induced a conductance increment of 1.21 μS and an apical to serosal Isc of 28.78 μA/cm2. The Isc can not be completely blocked by apical application of amiloride. Nifedipine and TEA had no effect on Clematis Armandi induced Isc decrease. These data indicate that frog skin is highly responsive to the concentrated Clematis Armandi extracts. The increase in Isc reflects changes in transepithelial transport of Na+ ions modulated at apical membrane. The enormous increase in transepithelial conductance suggests that in additional to enhancement of amiloride-sensitive Na+ channels, Clematis Armandi may also modulate other pathways, such as Cl- ion channel modulation, which needs further investigation.
目 錄
頁次
誌謝
中文摘要1
英文摘要3
目錄Ι
緒言5
研究目的14
材料與方法15
結果24
討論26
參考文獻30
圖30-42
表43-44
附圖46-48
參考文獻Asher, C., and H. Garty.( 1988 ) Aldosterone increases theapical Na+ permeability of toad bladder by two different mechanisms. Proc.Natl. acsd. Sci. U.S.A 85:7413-7417.Beck, J.S., and D. J. Potts.( 1990 ) Cell swelling, coptransport activate ion and potassium conductance in isolated perfused rabbit kidney proximal tubules. J. Physiol. (Lond.)425:369-378.Benos, D. J.,.M.Sawayda, I.I. Ismailov, and J. P. Johnson.( 1995 ) Structure and function of amiloride-sensitive Na+ channels. J. Membr. Biol. 143:1-18.Canessa, C. M.,J.-D.Horisberger, and B. C. Rossier.( 1993 ) Epithelial sodium channel related to proteins involved in neurodegeneration. Nature 361: 467-470.Canessa, C. M., A.-M. Merillat, and B. C. Rossier.( 1994a ) Membrane topology of the epithelial sodium channel in intact cells. Am, J. Physiol.267 (Cell Physiol. 36): C1682-C1690.Chase, H. S., jr., and Q. Ai-Awqati.( 1990 ) Regulation of the sodium permeability of the luminal border of toad bladder by intercellular sodium and calcium. J. gen. physiol. 77:693-712, 1981Civan, M. M, and H.Garry.(1990) Toad urinary bladder as a model for studying transpithelial sodium transport. Methods Enzymol. 192:683-697.Coutry, N., N. Farman, J. P. Bonvalet, and M. Blot-Chabaud.( 1995 ) Synergistic action of vasopressin and aldosterone on basolateral Na+-K+-ATPase in the vertical collecting duct. J. Membr. Biol. 145:99-106.D Choi, R M Bostock, S Avdiushko, and D F Hildebrand (1994) Lipid-Derived Signals that Discriminate Wound- and Pathogen-Responsive Isoprenoid Pathways in Plants: Methyl Jasmonate and the Fungal Elicitor Arachidonic Acid Induce Different 3-Hydroxy-3-Methylglutaryl-Coenzyme A Reductase Genes and Antimicrobial Isoprenoids in Solanum tuberosum L. Proc. Natl. Acad. Sci. USA. March 15; 91(6): 23292333 Erlij, D., and H. H. Ussing.(1978) Transport across amphibian skin. In: Membrane Transport in Biology, Vol Ⅲ, edited by G. Giebisch, D. C.Tosteson, and H. H. Ussing. Birlin: Springer-Verlag, P175-208.Finn, A. L.(1978) Transport across amphibian urinary bladder. In: Membrane Transport in Biology, Vol Ⅲ, edited by G. Giebisch, D. C.Tosteson, and H. H. Ussing. Birlin: Springer-Verlag, P209-238.Finlelstein,(1976) A. Nature of the water permeability increase induced by antidiuretic hormone (ADH) in toad urinary bladder and related tissues. J. Gen. Physiol. 68:137-143.Frizzell,R. A.,M.C. Dugas, and S.G. Schultz.(1975) Sodium chloride transport by rabbit gallbladder direct evidence for a coupled NaCl influx process. J. Gen. Physiol .65: 769-795.Fromter, E.(1972) The route of passive ion movement through the epithelium of Necturus gallbladder. J. Membr. Biol. 8:259-301.Garty, H.(1994) Molecular properties of epithelial, amiloride-blockable Na+ channels . FASEB J. 8:0522-0528.Garty, H., C. Asher, and O.(1987) Yeger.Direct inhibition of epithelial Na+ channels by Ca2+ and other divalent cations. J.membr. Biol, 95: 151-162.Goldstein, O., C. Asher, P. Barbryk, E. J. Cragoe, Jr., W Clauss, and H. Garty.(1993) An epithelial high-affinity amiloride binding site, different from the Na+ channel. J. Biol. Chem. 268:7856-7862.Hamilton, K. L., and D. C. Eaton.(1985) Single-channel recordings from amiloride-sensitive epithelial sodium channel. Am, J. Physiol. 249 (Cell Physiol. 18):C200-C207.Harvery, B. J.(1993) Cellular mechanisms of regulation of ion and water channels and pumps in high-resistance epithelia. In:Isotonic Transport in Leaky Epitbelia, Alfred Benzon Symposium 34, edited by H. H. Ussing, J. Fischbarg, O. Sten-Knudsen, E. H. Larsen, and N. J. Willumsen. Copenhagen: Munskgaard, P. 312-332.Hays, R. M., N. Franki, H. Simon, and Y. Gao.(1994) Antidiuretic hormone and exocytosis: lessons from neurosecretion. Am. J. Physiol. 267(Cell Physiol. 36):C1507-C1524.Helman, S. I., and N. L. Kizer.(1990) Apical sodium ion channels of tight epithelia as viewed from the perspective of noise analysis. Curr. Top. Membr. Tramsp. 37: 117-155.Hirsh, J., and E.Schlatter.(1993) K+ channels in the basolateral membrane of rat cortical collecting duct. Pflugers Arch. 424: 470-477.Kemendy, A. E., T. R. Kleyman. and D. C. Eaton.(1997) Aldosterone alters the open probability of amiloride-blockable sodium channels in A6 epithelia. Am J. Physiol. 263 (Cell Physiol. 32):C825-C837.Kleyman, T. R., and E. J. Cragoe, Jr.(1990) Cation transport probes: the amiloride series. Methods Enzymol. 191: 793-755.Koefoed-Johnsen, V. (1957) The effect of g-strophanthin (ouabain) on the active transport of sodium through the isolated frog skin. Acta Physiol. Scand. 42 (Suppl. 145): 87-88.Koefoed-Johnsen, V., and H. H. Ussing.(1958) The nature of the frog skin potential. Acta Physiol. Secand. 42: 298-308.Leaf, A.(1982) From toad bladder to kidney. Am. J. Physiol. 242 (Renal Fluid Electrolyte Physio. 11):F103-F111.Leblanc, G., and F. Morel. (1975) Na and K movements across the membranes of frog skin epithelia associated with transient current changes. Pflugers Arch. 358:159-177.Lee, W.-S, and S. C. Hebert.(1995)ROMK inwardly rectifying ATP-sensitive K+ channel. I. Expression in rat distal nephron segments. Am. J. Physiol. 268:(Renal fluid Electrolyte Physiol. 37)F1124-F1131. Lewis, S. (1977) A. reinvestigation of the function of the mammalian urinary bladder. Am. J. Physiol. 232 (Renal Fluid Electrolyte Physiol. 3):F187-F195.Lewis, S. A., and W. P. Alles.(1986) Urinary Kallikrein: a physiological regulator of epithelial Na+ absorption. Proc. Acad. Sci. U.S.A. 83: 5345-5348.Lewis, S. A., and C. Clausen.(1991) Urinary proteases degrade epithelial sodium channels. J. Membr. Biol. 122: 77-88.Lindemann, B.(1984) Fluctuation analysis of sodium channels in epithelia. Annu. Rev. Physiol. 46: 497-515.Lu, M., and W.-H. Wang.(1996) Nitric Oxide regulates the low-conductance K+ channel in basolateral membrane of cortical collecting duct. Am. J. Physiol. 270(Cell Physiol. 39):C1366-C1344.Macknight, A. D. C,(1992) Ion and water transport in toad urinary epithelia. In: Handbook of Physiology: Renal Physiology, edited by E. E. Windhager. New York:Oxford University Press for the American Physiological Society, sect 8, vol. 1. chapt. 8, p. 271-320.MacRobbie, E. A. C., and H. H. Ussing.(1961) Osmotic behavior of the epithelial cells of frog skin. Acta Physiol. Scand. 53:348-365.Nellans, H. N., R.A. Frizzell, and S. G. Schultz.(1973) Coupled sodium-chloride influx across the brush border of rabbit ileum. Am. J. physiol. 225:467-475.Palmer, L. G.(1987) Ion selectivity of epithelial Na channels. J. Membr. Biol. 96:97-106.Palmer, L. G.(1992) Epithelial Na channels: function and diversity. Annu. Rev. Physiol. 54:51-66.Palmer, L. G.(1995) Epithelial Na channels and their Kin. New Physiol. Sci. 10:61-67.Palmer, L. G., and G.(1987) Frindt. Effects of cell Ca and pH on Na channels from rat vertical collecting tubule. Am. J. Physiol.253 (Renal Fluid Electrolyte Physiol. 22):F333-F339.Palmer, L. G., and H. Sackin.(1992) Electrophysiological analysis of transepithelial transport. In: The Kidney: Physiology and Pathophysiology, edited by D. W. Seldin and G. Giebisch. New York: Raven, p. 361-405.Penniston, J. T., and A. Enyedi. (1994) Plasma membrane Ca2+ pump: recent development. Cell Physiol. Biochem. 4:148-159.Perez-Reyes and Schneider.(1994)Calcium channels: structure, function, and classification. Drug Dev. Res. 33. P295.Reuss, L.(1988) Cell volume regulation in nonrenal epithelia. Renal Physiol. Biochem. 11:187-201.Reuss, L., and C. U. Ceotton.(1994) Volume regulation in epithelia: transcellular transport and cross-talk.In:Cellular and Molecular Physiology of Cell Volume Regulation, edited by K. Strange. Boca Raton, FL: CRC, p.31-48.Roger T. Worell, Hui-Fang Bao, Don D. Denson, and Douglas C. Eaton(2001) Contrasting effects of cPLA2 on epithelial Na+ transport. Am. J. physiol. Vol. 281, Issue 1, C147-C156Sansom, S. C., B.Q. La, and S. L. Carosi.(1990) Potassium and chloride channels of the basolateral membrane (BLM) of the rabbit cortical collecting duct(CCD) (Abstract). Kidney Int.37 (Supp. 1): 570.Strange, L.(1989) Ouabain-induced cell swelling in rabbit vertical collecting tubule: NaCl transport by principal cells. J. Membr. Biol. 107:249-261.Torres, R. J., G. A. Altenberg,J. A. Copello, G. Zampighi, and L. Reuss. (1996) Preservation and structural and functional polarity in isolated epithelial cells. Am. J. Phyisol. 270 (Cell Physiol, 39): C1864-C1874.Ussing, H. H.(1986) Epithelial cell volume regulation illustrated by experiments in frog skin, Renal Physiol. 9: 38-46.Ussing, H. H.(1989) Epithelial transport: frog skin as a model system. In: Membrane Treansport. People and Ideas, edited by D. C. Tosteson. New York: Oxford, p. 337-362.Ussing, H. H. and E. E. Windhager.(1964) Nature of shunt path and active sodium transport path through frog skin epithelium. Acta Physiol. Scand. 61:484-504, 1964.Ussing, H. H. and K. Zerahn.(1951) Active transport of sodium as the source of electric current in the short-circuited isolated frog skin. Acta Physiol. Scand. 23: 110-127.Van Os, C. H.(1987) Transcellular calcium transport in intestinal and renal epithelial cells. Biochim. Biophys. Acta 906: 195-222.Wang, W.-H., C. M. McNicholas, A. S. Segal, and G. Giebisch.(1994) A novel approach allows identification of K channels in the lateral membrane of rat CCD. Am. J. Physiol.266. (Renal Fluid Electrolyte Physiol.33): F813-F822.Wade, J, B.(1994) Role of membrane traffic in the water and Na+ responses to vasopressin. Semin. Nephrol. 14: 322-332.Weinman, E. J. (1988), W. P. Dubinsky, K. Fisher, D. Steplock, Q. Dinh, L. Chang, and S. Shenolikar. Regulation of reconstituted renal Na+/H+ exchanger by calcium-dependent protein kinases. J. Membr. Biol. 103: 237-244.Weinstein, A. M., and J. L. Stephenson.(1979) Electrolyte transport across a simple epithelium. Steady-state and transient analysis. Biophys. J. 27: 165-186.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top