跳到主要內容

臺灣博碩士論文加值系統

(18.204.56.185) 您好!臺灣時間:2022/08/17 15:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡宗鑑
研究生(外文):Tseng-Chien Tsai
論文名稱:高功率長波段放大自發性輻射光纖光源之研究
論文名稱(外文):Study of High Power L-band Amplified Spontaneous Emission Fiber Source
指導教授:陳永光
指導教授(外文):Yung-Kuang Chen
學位類別:碩士
校院名稱:國立中山大學
系所名稱:光電工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:63
中文關鍵詞:放大自發性輻射光纖光源光纖陀螺儀
外文關鍵詞:ASEOLCRFOG
相關次數:
  • 被引用被引用:6
  • 點閱點閱:245
  • 評分評分:
  • 下載下載:43
  • 收藏至我的研究室書目清單書目收藏:1
本論文針對長波段放大自發性輻射光纖光源進行研究,探討以1480 nm波段雙向幫激雷射架構下的放大性自發性輻射光纖光源的特性。我們以1480 nm、1490 nm幫激雷射幫激摻鉺光纖,適當的選擇摻鉺光纖的長度,在不同反射率(R)下調整幫激雷射的功率,討論光源的輸出功率、平均波長、線寬、平坦度和功率轉換效率。採用的光源架構有雙前向(FF)、前後向(FB)和後前向(BF)等架構。實驗的結果顯示,前後向架構在摻鉺光纖長度為93 m,反射率為30 %,幫激組合為(40, 130mW)時,摻鉺光纖的放大性自發性輻射光源具有輸出功率(POUT)71.8 mW、平均波長(λm)為1584.3 nm、光源線寬(Δλ)為41.6 nm、平坦度(ΔP)為1 dB和42.2 %的功率轉換效益(η),此為三種架構中具有最佳的光源特性。
In this thesis, we investigate the double-pumped L-band (1570-1610 nm) amplified spontaneous emission (ASE) fiber source by employing the 1480 nm bi-directional pumping configuration. First, we chose the adequate fiber length, and then adjusted the pump power to optimize the characteristics of the ASE source in different reflectance. The characteristics are experimentally examined and compared in terms of output power, mean wavelength, linewidth, flatness and conversion efficiency in three configurations with forward-forward (FF), forward-backward (FB) and backward-forward (BF) structures. In our experiments, FB configuration with EDF length of 93 m and reflectance of 30 % is the best one to be an L-band ASE fiber source with an output power(POUT) of 71.8 mW, a mean wavelength(λm) of 1584.3 nm, a linewidth(Δλ) of 41.6 nm, the flatness(ΔP) of 1 dB, and the pump conversion efficiency(η) of 42.2 %.
內容目錄
頁次
◎誌謝………………………………………………………………I
◎中文摘要…………………………………………………………II
◎英文摘要…………………………………………………………III
◎內容目錄…………………………………………………………IV
◎圖表目錄…………………………………………………………V
第一章 緒論……………………………………………………1
1.1研究背景……………………………………………………1
1.2研究動機……………………………………………………7
1.3論文結構……………………………………………………7
第二章 長波段放大自發性輻射光纖光源的基本原理………8
2.1摻鉺光纖放大器的基本原理………………………………8
2.2放大自發性輻射光纖光源基本架構………………………9
2.3光源設計參數………………………………………………10
2.4光源的特性參數定義………………………………………10
2.5光源平均波長的穩定性……………………………………11
2.6光源的雜訊…………………………………………………12
第三章 長波段放大自發性輻射光纖光源實驗………………15
3.1元件特性量測及光源組裝………………………………15
3.2長波段光纖光源架構……………………………………16
3.2.1摻鉺光纖長度………………………………………17
3.3實驗量測結果………………………………………………17
3.3.1光源輸出功率………………………………………17
3.3.2光源平均波長與線寬………………………………19
3.3.3討論…………………………………………………23
第四章 結論……………………………………………………24

◎參考文獻……………………………………………………25
◎附表…………………………………………………………28
◎附圖…………………………………………………………34
〔1〕R. J. Mears, L. Reekie, I. M. Jauncie, and D. N. Payne, “High-gain rear-earth doped fiber amplifier at 1.54 μm,” in Optical Fiber Communication Conference, Vol. 3, 1987 OSA Technical Digest Series, (Optical Society of America, Washington, DC., 1987) p. 167.
〔2〕E. Desurvier, J. R. Simpson, and P. C. Becker, Opt. Lett. 12, 888, 1987.
〔3〕D. Derickson, Fiber Optical Test and Measurement, Prentice Hall PTR, New Jersey, 1998.
〔4〕P. F. Wysocki, M. J. F. Digonnet and B.Y. Kim, “Wavelength stability of a high-output, broadband, Er-doped superfluorescent fiber source pumped near 980nm,” Optics Lett., vol. 16, no. 12, pp. 961-963, 1991.
〔5〕S. V. Chernikov, J. R. Taylor, V. P. Gapontsev, B. E. Bouma, J. G. Fujimoto, “A 75-mW superflourescent ytterbium fiber source operating around 1.06 μm,” OLEO, PP. 83-84, 1997
〔6〕P. R. Morkel, K. P. Jedrzejewski, E. R. Taylor and D. N. Payne, “High-gain superfluorescent neodymium-doped single mode fiber source,” IEEE Photon. Technol. Lett., vol. 4, no. 7, pp. 706-708, 1992.
〔7〕D. C. Hall and W. K. Burns, “Wavelength stability optimization in Er3+-doped superfluorescent figre sources,” Electron. Lett., vol. 30, no. 8, pp.653-654, 1994.
〔8〕H. Fevrier, J. F. Marcerou, P. Bousselet, J. Auge and M. Jurczyszyn, “High power, compace 1.48um diode-pumped broadband superfluorescent fibre source at 1.55um,” Electron. Lett., vol. 27, no. 3, pp. 261-263, 1991.
〔9〕W. K. Burns, C. Chen and R. P. Moeller, “Fiber-optic gyroscopes with broad-band sources,” J. Lightwave Technol., vol. LT-1, no. 1, pp. 98-105,1983.
〔10〕K. Takada, T. Kitagawa, W. Shimizu and M. Horiguchi, “ High-sensitivity low coherence reflectometer using erbium-doped superfluorescent fibre source and erbium-doped power amplifier,” Electron. Lett., vol. 29, no. 4, pp. 365-367, 1993.
〔11〕G. Sagnac, “L’ether lumineux demontre par l’effet du vent relatif d’ether dans un interferometer en rotation uniforme,” Compte-rendus de l’Academie des Sciences, vol. 95, pp. 708-710, 1913.
〔12〕R. A.. Bergh, H. C. Lefevre and H. J. Shaw, “An overview of fiber-optic gyroscopes,” IEEE J. Lightwave Technol., vol. LT-2, no. 2, pp. 91-107, 1984.
〔13〕V. Vali and R. W. Shorthill, “Fiber ring interferometer,” Appl. Opt., vol. 15, pp. 1099-1100, 1976.
〔14〕P. Myslinski, C. Barnard, X. Pan, Q. Wu, J. Chrostowski, “Applications of rear-doped fibres,” IEEE, pp. 290-294, 1993.
〔15〕Paul F. Wysocki, M. J. F. Digonnet, B. Y. Kim, H. J. Shaw, “Characteristics of erbium-doped superfluorescent fiber sources for interferometric sensor applications,” IEEE J. Light. Technol., vol. 12 no. 3, pp. 550-567, 1994.
〔16〕Rong Zhu, Yanhua Zhang, Qilian Bao, “A novel intelligent strategy for improvine measurement precision of FOG,” IEEE Transaction, vol 49, no. 6, pp.1183-1188, 2000.
〔17〕Jefferson L. Wagener, Michel J. F. Digonnet, Herbert J. Shaw, “ IEEE J. Light. Technol., vol. 15, no. 9, pp. 1689-1694, 1997.
〔18〕B. L. Danielson and C. D. Whittenberg, “Guided-wave reflectometry with micrometer resolution,” Appl. Opt., vol. 26, no. 14, pp.2836-2842, 1987.
〔19〕S. R. Chinn and E. A. Swanson, “Blindness limitations in optical coherence domain reflectometry,” Electron. Lett., vol. 29, no. 23, pp.2025-2027, 1993.
〔20〕W. V. Sorin and D. M. Baney, “Measurement of Rayleigh backscattering at 1.55um with 32um spatial resolution,” IEEE Photon. Technol. Lett., vol 4, no. 4, pp. 374-376, 1992.
〔21〕K. Takada, H. Yamada and M. Horguchi, “Loss distribution measurement of silicabased waveguides by using a jaggedness-free optical low coherence reflectometer,” Electron. Lett., vol. 30, no. 17, pp. 1441-1443, 1994.
〔22〕K. Takada, M. Yamada and S. Mitachi, “Optical low coherence reflectometer with a 47-dB dynamic range achieved by using a Fluoride-based Erbium-doped fiber amplifier,” IEEE J. Lightwave Technol., vol. 16, no. 4, pp. 593-597.
〔23〕P. Y. Fonjallaz, H. G. Limberger, R. P. Salathe, C. Zimmer and H. H. Gilgen, “Direct determination of main fiber Bragg grating parameters using OLCR,” IEE Proc. Optoelectron., vol. 141, no. 2, pp. 141-144, 1994.
〔24〕U. Wiedmann, P. Gallion, Y. Jaouen and C. Chabran, “Analysis of distributed feedback lasers using optical low-coherence reflectometry,” IEEE J. Lightwave Technol., vol. 16, no. 5, pp. 864-869, 1998.
〔25〕M. H. Reeve, A. R. Hunwicks, W. Zhao, S. G. Methley, L. Bickers, and S. Hornung, “LED spectral slicing for single-mode local loop application,” Electron. Lett., vol. 24, pp. 389-390, 1988.
〔26〕T. E. Chapuran, S. S. Wagner, R. C. Menendez, H. E. Tohme, and L. A. Wang, “Broadband multichannel WDM transmission with superluminescent diodes and LEDs,” GLOBECOM., pp. 613-618, 1991.
〔27〕J. S. Lee, Y. C. Chung, and D. J. DiGiovanni, “Spectrum-sliced fiber amplifier light source for multichannel WDM application,” IEEE Photon. Technol. Lett., vol. 5 pp. 1458-1461, 1993.
〔28〕Jung-Hee Han, sun-Jong Kim, Jae-Seung Lee, “Transmission of 4×2.5-Gb/s spectrum-sliced incoherent light channels over 240 km of dispersion-shifted fiber with 200-Ghz channel spacing,” IEEE J. Photon. Technol. Lett., vol. 11, no. 7, pp. 901-903, 1999.
〔29〕K. Y. Liou, J. B. Stark, U. Koren, E. C. Burrows, J. L. Zyskind, K. Dreyer, “System performance of an eight-channel WDM local access network employing a spectrum-sliced and delay-line-multiplexed LED source,” IEEE Photon. Technol. Lett., vol. 9, no. 5, pp. 696-698, 1997.
〔30〕P. D. D. Kilkelly, P. J. Chidgey, G. Hill, “Experimental demonstration of a three channel WDM system over 110 km using superluminescent diodes,” Electron. Lett., 1990.
〔31〕Jung-Hee Han, Jae-Seung Lee, Sang-Soo lee, Tae-Yeoul Yun, Hyang-Kyun Kim, Chang-Hee Lee, sang-Yung Shin, ”2.5Gb/s transmission of spectrum-sliced fibre amplifier light source channels over 200 km of dispersion-shifted fibre,” Electron. Lett., vol. 31, no. 12, pp. 989-991, 1995.
〔32〕Hirotaka Ono, Makoto Yamada, Terutoshi Kanamori, Shoichi Sudo, Yasutake Ohishi, “1.58-μm band gain-flattened erbium-doped fiber amplifiers for WDM transmission systems,” IEEE J. Lightwave Technol., vol. 17, no. 3, pp. 490-496, 1999.
〔33〕T. C. Liang, Y. S. Lin and Y. K. Chen, “Comparison of the characteristics of double-pass erbium superfluorescent fiber sources obtained from different flatting techniques,” Appl. Opt., vol. 38, no. 3, pp. 522-529, 1999.
〔34〕K. Iwatsuki, “Excess noise reduction in fiber gyroscope using broader spectrum linewidth Er-doped superfluorescent fiber laser,” IEEE Photon. Technol. Lett., vol. 3, no. 3, pp. 281-283, 1991.
〔35〕P. R. Morkel, R. I. Laming and D. N. Payne, “Noise characteristics of high-power doped-fiber superluminescent sources,” Electron. Lett., vol. 26, no. 2, pp.96-98, 1990.
〔36〕M. Tur, E. Shafir and K. Blotekjaer, “Source-induced noise in optical systems driven by low-coherence sources,” IEEE J. Lightwave Technol., vol. 8, no. 2, pp. 183-189, 1990.
〔37〕李建木, “長波段放大自發性輻射光纖光源之研究,” 國立中山大學光電工程研究所碩士論文, 2001年6月.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top