跳到主要內容

臺灣博碩士論文加值系統

(3.229.124.74) 您好!臺灣時間:2022/08/11 08:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪詩蕾
研究生(外文):Shih-Lei Hung
論文名稱:高轉換效率的平坦化長波段摻鉺光纖放大器之設計與研製
論文名稱(外文):Design and Fabrication of High Conversion-Efficiency Flattened L-band Erbium Doped Fiber Amplifier
指導教授:陳永光
指導教授(外文):Yung-Kung Chen
學位類別:碩士
校院名稱:國立中山大學
系所名稱:光電工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:78
中文關鍵詞:長波段摻鉺光纖放大器
外文關鍵詞:L-band EDFA
相關次數:
  • 被引用被引用:4
  • 點閱點閱:159
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1

本論文針對高轉換效率的平坦化長波段摻鉺光纖放大器進行研究,分別在980 nm及1480 nm的幫激波長下找出最佳的架構。我們以在各個波道能達到最高的輸出功率下,32個波長的增益平坦度<0.7 dB,雜訊指數NF<6 dB作為設計的準則。模擬的九種架構包含了(a)雙前向幫激(b)雙後向幫激(c)前後向幫激(d)後前向幫激,再分別討論有無加入光隔離器的架構。最後找出在1480 nm幫激波長下的FBIp架構為具有高轉換效率且增益平坦的長波段摻鉺光纖放大器。我們亦實際組裝與理論模擬相同之最佳架構的長波段摻鉺光纖放大器並量測其特性,發現模擬的結果和實驗的數據吻合。最後,我們探討傳統波段摻鉺光纖放大器加入增益平坦濾波器來維持32個波道增益的平坦。長波段(L-band)的放大器與傳統波段(C-band)的摻鉺光纖放大器並行使用,能夠增加DWDM系統的容量達一倍以上,達成寬頻放大器的目標。


In this thesis, we theoretically investigate optimum configurations of high conversion efficiency and gain-flattened L-band (1570-1600 nm) erbium-doped fiber amplifier (EDFA) by employing the 1480 nm and 980 nm bi-directional pumping configuration. The design criterion of L-band EDFA is to achieve highest channel output power while keeping the differential channel gain to be <0.7 dB among 32 channels with low channel noise figure of <6 dB. The nine L-band EDFA configurations are examined and compared. These configurations considered include the dual-forward, dual-backward, and different bi-directional pumping schemes, each with and without the midway optical isolator. Among all configurations, we find that the pump-pass case in forward-and-backward pumping scheme by employing the 1480 nm pumping wavelength is the best configuration to offer the highest channel output power with good channel gain uniformity and moderate low noise figure. Then we verified the simulation results through experiments. We also theoretically investigate gain-flattened C-band (1530-1560 nm) EDFA. Using L-band and C-band EDFAs in parallel, we can greatly expand the amplification wavelength region.


誌謝I
中文摘要II
英文摘要III
內容目錄IV
表目錄V
圖目錄VI
第一章簡介1
1.1 研究背景1
1.2 研究動機2
1.3 論文結構2
第二章長波段摻鉺光纖放大器之理論與模擬3
2.1 長波段摻鉺光纖放大器基本原理3
2.2 980 nm雙幫激長波段摻鉺光纖放大器之理論模擬4
2.3 1480 nm雙幫激長波段摻鉺光纖放大器之理論模擬10
2.4 討論..……………………………………………………..……….12
第三章長波段摻鉺光纖放大器之實驗13
3.1 光放大器特性參數的定義與量測方法13
3.2 元件的特性量測與放大器的組裝17
3.3 1480 nm幫激波長FBIp架構18
3.4 980 nm幫激波長FBIp架構21
3.5 討論...……………………………………………………………..23
第四章寬頻摻鉺光纖放大器之設計與模擬24
4.1 傳統波段摻鉺光纖放大器之理論與模擬24
4.2 寬頻摻鉺光纖放大器28
第五章結論29
參考文獻31
附表33
附圖39


[1]D. Derickson, Fiber Optical Test and Measurement, Prentice Hall PTR, New Jersey, 1998.
[2]G. P. Agrawal, Fiber-Optical Communication System, John Wiley & Sons, Inc., New York, 1997.
[3]P. C. Becker, N. A. Olsson and J. R. Simpson, Erbium-Doped Fiber Amplifiers-Fundamentals and Technology, Academic Press, San Diego and London, 1999.
[4]M. Jinno, T. Sakamoto, J. Kani, S. Aisawa, K. Oda, M. Fukui, H. Ono and K. Oguchi, ”First demonstration of 1580 nm wavelength band WDM transmission for doubling usable bandwidth and suppressing FWM in DSF,” Electron. Lett., vol. 33, no. 10, pp. 882-883, 1997.
[5]M. Yamada, A. Mori, K. Kobayashi, H. Ono, T. Kanamori, K. Oikawa, Y. Nishida and Y. Ohishi, “Gain-flattened tellurite-based EDFA with a flat amplification bandwidth of 76 nm,” IEEE Photon. Technol. Lett., vol. 10, no. 9, pp. 1244-1246, 1998.
[6]M. Yamada, H. Ono, T. Kanamori, T. Sakamoto, Y. Ohishi and S. Sudo, “A low-noise and gain-flattened amplifier composed of a silica-based and a fluoride-based Er3+-doped fiber amplifier in a cascade configuration,” IEEE Photon. Technol. Lett., vol. 8, no. 5, pp. 620-622, 1996.
[7]M. Yamada, H. Ono, T. Kanamori, S. Sudo and Y. Ohishi, “Broadband and gain-flattened amplifier composed of a 1.55μm-band and a 1.58μm-band Er3+-doped fiber amplifier in a parallel configuration,” Electron. Lett., vol. 33, no. 8, pp. 710-711, 1997.
[8]H. Masuda, S. Kawai, K. Suzuki, K. Aida, “Wide band and low noise optical amplification using distributed Raman amplifier and erbium-doped fiber amplifiers,” Proc. 1998 European Conference on Optical Communications (ECOC’98), vol. 1, pp. 51-52, 1998.
[9]B. Min, H. Yoon, W. J. Lee, and N. Park, “Coupled structure for wide-band EDFA with gain and noise figure improvements from C to L-band ASE injection,” IEEE Photon. Technol. Lett, vol. 12, no. 5, pp. 480-482, 2000.
[10]H. Ono and M. Yamada, S. Sudo and Y. Ohishi, ”1.58mm-band Er3+-doped fiber amplifier pumped in the 0.98 and 1.48mm-bands,” Electron. Lett., vol. 33, no. 10, pp. 876-877, 1997.
[11]J. F. Massicott, J. R. Armitage, R. Wyatt, B. J. Ainslie, and S. P. Craigryan, “High gain, Broadband, 1.6μm Er3+ doped silica fiber amplifier,” Electron. Lett., vol. 26, no. 9, pp. 1645-1646, 1990.
[12]J. F. Massicott, R. Wyatt, and B. J. Ainslie, “Low noise operation of Er3+ doped silica fiber amplifier around 1.6μm,” Electron. Lett., vol. 28, no. 9, pp. 1924-1925, 1992.
[13]H. Ono, M. Yamada, and Y. Ohishi, “Gain-flattened Er3+-doped fiber amplifier for a WDM signal in the 1.57-1.60-μm wavelength region,” IEEE Photon. Technol. Lett., vol. 9, no. 5, pp. 596-598, 1997.
[14]Y. Sun, J. W. Sulhoff, A. K. Srivastava, J. L. Zyskind, and C. Wolf, “An 80 nm ultra wide band EDFA with low noise figure and high output power,” Proc. 1997 European Conference on Optical Communications (ECOC’97), vol. 5, pp. 69-72, 1997.
[15]H. Ono, M. Yamada, T. Kanamori, S. Sudo, and Y. Ohishi, “1.58-μm band gain-flattened erbium-doped fiber amplifiers for WDM transmission systems,” J. Lightwave Technol., vol. 17, no. 3, pp. 490-496, 1999.
[16]S. Y. Park and H. K. Kim, “Efficient and low-noise operation in a gain-flattened 1580-nm band EDFA,” Tech. Dig. OFC’99, paper WG8-2, 1999.
[17]J. Lee, U. C. Ryu, S. J. Ahn and N. Park, “Enhancement of power conversion efficiency for an L-band EDFA with a secondary pumping effect in the unpumped EDF section,” IEEE Photon. Technol. Lett., vol. 11, no. 1, pp. 42-44, 1999.
[18]C. R. Giles and E. Desurvire, “Modeling erbium-doped fiber amplifiers,” Lightwave Technol., vol. 9, no. 2, pp. 271-283, 1991.
[19]D. Derickson, Fiber Optical Test and Measurement, Prentice Hall PTR, New Jersey, 1998.
[20]F. A. Flood and C. C. Wang, “980-nm Pump-Band Wavelengths for Long-Wavelength-Band Erbium-Doped Fiber Amplifiers,” IEEE Photon Technol. Lett., vol. 11, no. 10, 1999.
[21]J. F. Massicott, R. Wyatt, B. J. Ainslie and S.P. Craig-Ryan, “Efficient, high power, high gain, Er+ dope silica fiber amplifier,” Electron. Lett., vol. 26, pp. 1038-1039, 1990.
[22]J. Aspell, J. F. Federici, B. M. Nyman, D. L. Wilson and D. S. Shenk, “Accurate noise figure measurements of erbium-doped fiber amplifier in saturation conditions,” Tech. Dig. OFC’92, paper TahA4, 1992.
[23]D. M. Baney, and J. Stimple, “WDM EDFA gain characterization with a reduced set of saturating channels,” IEEE Photon. Technol. Lett., vol.8, no. 12, pp. 1615-1617, 1996.
[24]J. Lee, U. C. Ryu, S. J. Ahn and N. Park, “Enhancement of power conversion efficiency for an L-band EDFA with a secondary pumping effect in the unpumped EDF section,” IEEE Photon. Technol. Lett., vol. 11, no. 1, pp. 42-44, 1999.
[25]H. Ono, M. Yamada, M. Shimizu, and Y. Ohishi, “Comparison of amplification characteristics of 1.58 and 1.55μm band EDFAs,” Electron. Lett., vol. 34, no. 15, pp. 1509-1510, 1998.
[26]J. M. Delavaux, and J. A. Nagel, “Multi-Stage Erbium-Doped Fiber Amplifier Designs,” J. Lightwave Techmology, vol. 13, no. 5, pp. 703-720, 1995.
[27]K. Shin, H. Seo, J. Jeon, H. Jeong, Y. Lee, K. Jeong, “The Gain Flattening Effects of Mid-Term Isolator in Optical Amplifiers,” Fourth Optoelectronics and Communications Conference, vol. 2, pp. 1350-1352, 1999.
[28]D. Marcuse, A. R. Chraplyvy, and R. W. Tkach, “Dependence of cross-phase modulation on channel number in fiber WDM systems,” IEEE/OSA J. Lightwave Technol., vol. 12, no. 5, pp. 885-890, 1994.
[29]D. G. Schadt, “Effect of amplifier spacing on four-wave mixing in multichannel coherent communications,” Electron. Lett., vol. 27, no. 20, pp. 1805-1807, 1991.
[30] F. A. Flood, “Impact of pump and signal wavelength on inhomogeneous characteristics of L-band EDFAs,” Optical Fiber Communication Conference, 2000, vol. 2, pp. 117 —119,2000.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top