跳到主要內容

臺灣博碩士論文加值系統

(34.236.192.4) 您好!臺灣時間:2022/08/17 17:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:糜漢萍
研究生(外文):Han-Ping Mi
論文名稱:非分佈式拉曼光纖放大器之設計與實驗
論文名稱(外文):Design and Experiment of discrete FiberRaman Amplifier
指導教授:陳永光
指導教授(外文):Yung-Kuang Chen
學位類別:碩士
校院名稱:國立中山大學
系所名稱:光電工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:48
中文關鍵詞:拉曼光纖放大器
外文關鍵詞:Raman Amplifier
相關次數:
  • 被引用被引用:1
  • 點閱點閱:215
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0

本論文針對非分佈式拉曼光纖放大器的設計和特性進行研究,並探討多個幫激波長架構的光放大器特性。近來由於半導體雷射的功率日漸提高,使得非分佈式拉曼光纖放大器能實際運用於光纖通信系統中,而拉曼光纖放大器具有低雜訊和任意增益頻帶配置兩項優點,在未來光纖通信系統中將擔任重要的角色。實驗和模擬架構上我們均採用後向幫激的方式,在實驗和模擬的相互印證下,得知模擬對於四個幫激波長架構有最佳的吻合度,我們得以設計出四個幫激波長架構的長波段增益平坦化非分佈式摻鉺光纖放大器。實驗結果顯示我們所設計的長波段非分佈式摻鉺光纖放大器,在1565 nm ~ 1595 nm波段中,對七個功率為-16dBm的輸入信號有良好的增益平坦度 (≦1 dB) ,而信號增益均在10 dB以上。


In this thesis, we investigate the design and amplification characteristics of discrete fiber Raman amplifier (FRA), and discuss with amplification characteristics of FRA by employing multi-pumping-wavelength configuration. Recently, because of the invention of high output power of pump laser diodes, so discrete FRA can be practically employed in optical fiber communication system. The fiber Raman amplifier has two merits. One is the low noise characteristic and the other is the arbitrary spectral gain band, so it will play an important role in optical communication system. In this study, we employ backward pumping configurations in the experiment and simulation of discrete FRA. By comparing with results of experiment and simulation, we prove that the simulation results quite agree with the experimental data of four pumping wavelengths configuration, we have successfully designed an L-band gain flattened discrete FRA by using four pumping wavelengths configuration. The experimental results showed that the amplifier, for the input of seven optical channel each with —16 dBm input power level, has an optical gain of >10 dB of each channel with good gain uniformity (<1 dB) in the 1565-1595 nm wavelength region.


內容目錄
誌謝I
中文摘要II
英文摘要III
內容目錄IV
表目錄V
圖目錄VI
第一章、簡介1
1.1 研究背景1
1.2 研究動機2
1.3 論文結構3
第二章、拉曼光纖放大器之工作原理與特性4
2.1 拉曼光纖放大器(FRA)的基本原理4
2.1.1 激發性拉曼散射(SRS)……………………………………..4
2.1.2 拉曼增益係數(gR)……………………………………….…4
2.1.3 拉曼增益(Gain)………………………………………….…5
2.1.4 拉曼增益飽和(Raman gain saturation)………………….…7
2.1.5 雜訊指數(noise figure)……………………………………..8
2.1.6 雙重雷利散射(double Rayleigh scattering, DRS)…………8
2.2 非分佈式拉曼光纖放大器(discrete FRA)之討論……………….10
2.2.1 基本光路架構……………………………………………..10
2.2.2 幫激光源…………………………………………………..10
2.2.3 討論………………………………………………………..11
第三章、非分佈式拉曼光纖放大器之模擬與實驗12
3.1 實驗與模擬結果比較12
3.1.1 實驗與模擬架構…………………………………………..12
3.1.2 實驗和模擬之比較與討論………………………………..14
3.2 長波段增益平坦化非分佈式拉曼光纖放大器(L-band gain flattened discrete FRA)之研製……………………………….….16
3.2.1 增益平坦化非分佈式拉曼光纖放大器之特性……..…....16
3.2.2 增益平坦化非分佈式拉曼光纖放大器之設計與實驗….17
3.3 非分佈式拉曼光纖放大器之特性實驗………………………….20
3.3.1 高功率幫激光源架構實驗………………………………..20
3.3.2 多波長系統拉曼光纖放大器特性量測實驗……………..22
3.3 討論……………………………………………………………….23
第四章、結論…………………………………………………………….24
參考文獻…………………………………………………………………...26……………………………………………………………………..27
表目錄
頁次
表一.使用Lucent DCF模擬和實驗架構之幫激功率大小…………………18
表二.使用Sumitomo DCF模擬和實驗架構之幫激功率大小………………18
表三.模擬和實驗輸出功率相差值(△P )/探測信號(Pin): 0 dBm……………21
表四.模擬和實驗輸出功率相差值(△P)/探測信號(Pin) : -16 dBm.………...21
圖目錄
頁次
圖1.1非分佈式 (discrete) 和分佈式 (distributed) 拉曼光纖放大器 (FRA) 架構圖………….………………………………………………………..28
圖2.1激發性拉曼散射示意圖………….………………………….……….....28
圖2.2拉曼增益係數頻譜圖…………………………………………………...29
圖2.3不同輸入光信號功率之拉曼增益與幫激光功率的關係圖…………...29
圖2.4拉曼增益與輸入光信號功率之關係圖……………...…………………30
圖2.5雙重雷力散射(DRS)與不良接續面及連接器作用造成雜訊功率增加示意圖…………………………………………………………………...30
圖2.6有無雙重雷力散射(DBS)對光雜訊比的影響……………………..…...31
圖2.7非分佈式拉曼光纖放大器基本光路架構……………………………...31
圖2.8幫激光源極化方向對前向與後向幫激架構增益影響………………………………………………………………………...32
圖2.9幫激光源極化方向控制示意圖…………………………….…………..32
圖2.10光纖雷射架構圖(IPG-Photonics)………………...……………………..33
圖2.11功率合波器結合四個幫激波長的架構示意圖(Wavesplitter)…………33
圖3.1實驗及模擬架構圖………………….……………….……..………..34
圖3.2增益光纖(DCF)損失頻譜圖.…………………………………….……..35
圖3.3幫激光源頻譜分佈圖……………………………………….…………..35
圖3.4二個幫激波長架構實驗與模擬比較圖……...…………………………36
圖3.5四個幫激波長架構實驗與模擬比較圖……….……..………………37
圖3.6多幫激波長疊加增益平坦頻寬(未考慮幫激波長間的相互作用)……………………………………………………………………..…38
圖3.712個幫激波長頻譜配置圖(Namiki 研究群)…….…………………….38
圖3.8多幫激波長疊加增益平坦頻寬(考慮幫激波長間的相互作用)……..38
圖3.9實驗結果與重疊定理之頻譜比較圖…………………………………...39
頁次
圖3.10增益平坦化非分佈式拉曼光纖放大器實驗與模擬架構圖……………………………………………………………...…………40
圖3.11(a)輸入信號功率頻譜圖(Pin: -16 dBm)……………...…………………41
圖3.11(b)輸出信號功率頻譜圖(Lucent DCF)………………………………….…41
圖3.11(c)輸出信號功率頻譜圖(Sumitomo DCF)………………………………...41
圖3.12高功率幫激光源模擬輸出功率頻譜圖………………………………...42
圖3.13高功率幫激光源實驗輸出功率與增益頻譜圖(Pin=0dBm)…………...43
圖3.14高功率幫激光源實驗輸出功率與增益頻譜圖(Pin=-16dBm)…………44
圖3.15高功率幫激光源實驗與模擬輸出功率比較頻譜圖…………………...45
圖3.16高功率幫激光源實驗與模擬輸出功率比較頻譜圖………………...…46
圖3.17不同幫激波長架構相同幫激功率之增益頻譜比較圖………………..47
圖3.18飽和信號(saturation tone)量測方法之實驗架構圖…………………….48
圖3.19飽和信號與單一信號量測之增益頻譜比較圖………………………...48


[1] G. P. Agrawal, Fiber-Optical Communication System, John Wiley & Sons, Inc., New York, 1997.
[2] P. C. Becker, N. A. Olsson and J. R. Simpson, Erbium-Doped Fiber Amplifiers- Fundamentals and Technology, Academic Press, San Diego and London, 1999.
[3] P. B. Hansen, L. Eskilden, S. G. Grubb, A. J. Stentz, T. A. Strasser, J. Judkins, J. J. DeMarco, R. Pedrazzani, and D. J. DiGiovanni, “Capacity upgrades of transmission systems by Raman amplification,” IEEE Photon. Technol. Lett. vol. 9, no. 2, pp. 262-264, 1997.
[4] M. Nissov, C. R. Davidson, K. Rottwit, R. Menges, P. C. Corbett, D. Innis, and N. S. Bergano, “100 Gb/s (10×10 Gb/s) WDM transmission over 7200 km using distributed Raman amplification,” in Proc. Eur. Conf. Optical Fiber Communication, vol. 5 , pp. 9-12, 1997.
[5] S. Namiki and Y. Emori, “100 nm bandwidth flat gain Raman amplifiers pumped and gain-equalized by 12-wavelength-channel WDM high power laser diodes,” in Proc. Optical Fiber Communication Conf., Paper PD 19, 1999.
[6] R. H. Stolen and E. P. Ippen, “Raman gain in glass optical waveguides,” Appl. Phys. Lett.22, pp.276 , 1973.
[7] R. H. Stolen and E. P. Ippen, and A. R. Tynes, “Raman oscillation in glass optical waveguides,” Appl. Phys. Lett.20, 1972.
[8] G.. P. Agrawal, Fiber-Optical Communication System, John Wiley & Sons, Inc., New York, Chap. 8, pp. 381-382, 1997.
[9] S. A. E. Lewis, S. V. Chernikov and J. R. Taylor, “Gain saturation in silica-fibre Raman amplifier,” Electron. Lett., vol. 35, pp. 923-924, 1999.
[10] Y. Aoki “Properties of fiber Raman amplifiers and their applicability to Digital Optical communication systems,” IEEE, Journal of Lightwave Thchnol., vol. 6, pp.1225-1239, 1998.
[11] S. A. E. Lewis, S. V. Chernikov and J. R. Taylor, “Gain and saturation characteristics of dual-wavelength-pumped silica-fibre Raman amplifier,” Electron. Lett. vol. 35, pp.1178-1179, 1999.
[12] R. S. Tucker, D. M. Baney, “Optical Noise Figure: Theory and Measurements,” Conf. Optical Communication, vol. 3, pp. WI 1-1-1-3, 2000.
[13] P. B. Hansen, L. Eskildsen, A. J. Stentz, T. A. Strasser, J. Judkin, J. J. DeMarco, R. Pedrazzani, and D. J. DiGiovanni, “Rayleigh scattering limitations in distributed Raman preamplifier,” IEEE Photon. Technol. Lett., vol.10, pp. 159-161, 1998.
[14] S. R. Chinn, “Temporal observation and diagnostic use of double rayleigh scattering in distributed Raman amplifiers,” IEEE Photon. Technol. Lett., vol. 11, pp. 1632-1634, 1999.
[15] Y. Akasaka, “Characteristics of optical fibers for discrete Raman amplifiers,” in proc. Eur. Conf. Optical Fiber Communication, Poster p18, 1999.
[16] H. Masuda, “Review of wideband hybrid amplifiers,” Optical Fiber Communication, vol. 1, pp. 2-4, 2000.
[17] A. Berntson, S. Popov, E.Vanin, G. Jacobsen and J. Karlsson, “Polarisation dependence and gain tilt of Raman amplifiers for WDM systems,” Optical Fiber Communication, vol. 1, pp. MI1/1 -MI1/3, 2001.
[18] Y. Emori, S. Matsushita, and S. Namiki, “Cost-effective depolarized diode pump unit designed for C-band flat-gain Raman amplifiers to control EDFA gain profile,” in Proc. Optical Fiber Communication Conf., vol. 4, pp. 106-108, 2000.
[19] A. J. Stentz, “Raman amplifier with improved system performance“, in proc. Eur. Conf. Optical Fiber Communication , paper PD16, pp. 16-17, 1996.
[20] T. N. Nielsen, “Raman amplifiers in WDM systems”, IEEE Lasers and Electro-Optics Society, vol. 2, pp. 471-472, 1999.
[21] S. G. Grubb, “High-power 1.48μm cascaded Raman laser in germanosilicate fibers”, IEEE Photon. Technol. Lett., vol. 9, pp. 197-199, 1995
[22] D. M. Baney, and J. Stimple, “WDM EDFA gain characterization with a reduced set of saturating channels”, IEEE Photon. Technol. Lett., vol. 8, pp. 1615-1617, 1996.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top