跳到主要內容

臺灣博碩士論文加值系統

(3.235.140.84) 您好!臺灣時間:2022/08/13 05:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張世恩
研究生(外文):Shin-En Chang
論文名稱:利用錫銲技術構裝半導體雷射模組之研究
論文名稱(外文):The Laser Diode Module Packaging by Soldering Technique
指導教授:鄭木海
指導教授(外文):Wood-Hi Cheng
學位類別:碩士
校院名稱:國立中山大學
系所名稱:光電工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:64
中文關鍵詞:半導體雷射錫銲技術
外文關鍵詞:Soldering TechniqueSemiconductor Laser
相關次數:
  • 被引用被引用:6
  • 點閱點閱:277
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
本論文為利用錫銲技術構裝雙排線式(DIP)雷射模組之研究,首先控制最佳氫氟酸與機油比例及最佳電弧放電之時間與位置製作出高耦光效率的光纖透鏡。光纖透鏡最佳曲率半徑約為9mm,光纖透鏡中心與光纖中心軸的偏位移小於0.5mm,而耦光效率可達82%。
模組構裝主要元件為FP雷射、檢光器、銅質基座與致冷器。首先將雷射晶粒、檢光器與熱敏電阻固定於銅質基座上,接著用加熱平台加熱模組外殼下方,使致冷器銲接在模組外殼上,且將銅質基座銲妥固定於致冷器上方。利用鑷子夾住光纖透鏡及光學座進行耦光與構裝,以電極加熱器施熱於銅質基座使被熔化體積約1.5mm3 之銦線絲與光纖混合,再調整光纖透鏡使達到最大耦光效率,整個步驟約為30秒。本研究之構裝後所耦到的光功率可以達到2.93mW,耦光效率為58.6%。
分析所量測的錫銲構裝後光纖透鏡縱向位移量約為7~10mm,橫向位移量約為0.5~1□mm。本研究並完成外部共振腔雷射模組構裝後輸出的光功率可達到2mW以上,及利用DIP模組來測量155Mbps以上之光傳輸系統的眼圖動態特性研究,結果得一睜開的眼圖。
ABSTRACT
A DIP (dual-in-line) laser diode module packaging by soldering technique was investigated. We made high coupling efficiency fiber lens under the best arc fusing conditions. The coupling efficiency of fiber lens was obtained 82%, while offset of fiber lens center was less than 0.5mm and curvature radius was about 9mm. We metallized the high coupling efficiency fiber lens, and packaged it in the DIP housing. The components inside the module were uncoated FP (Fabry-Perot) laser chip, p-i-n detector, substrate, and cooler. We made a package process as follows: 1) We utilized the heating apparatus to fix the FP laser, PIN detector, and thermistor on the substrate. 2) We utilized the heating apparatus to make the cooler fixed on the DIP housing and the substrate fixed on the cooler. 3) We utilized the electrothermal heating machine to melt 1.5mm3 indium wire and adjusted the fiber lens by tweezer to couple light into the fiber inside the DIP housing. We obtained the 2.93mW output power and 58.6% coupling efficiency after packaging.
The post-soldering-shift resulted from the indium solidification was the most important factor affecting the coupling efficiency. By improving substrate design properly, we could reduce the indium quantity to minimize the solidification effect. The post-soldering-shift should be controlled below 1mm in the transverse axis and below 10 mm in the longitudinal axis, respectively. Finally, We achieved an external cavity fiber grating laser module with 2mW output power, and got an open eye pattern after measuring the DIP transmitter module.
頁 次
中文摘要 Ⅰ
英文摘要 Ⅱ
致謝 Ⅲ
內容目錄 Ⅳ
圖表目錄 Ⅶ
第一章 緒論 1
1-1. 研究背景 1
1-2. 論文架構 3
第二章 高耦光效率光纖透鏡的製作 6
2-1. 光纖透鏡的製作 7
2-2. 耦光效率量測的方法 8
2-3. 光纖透鏡耦光效率量測結果與分析 9
2-3.1曲率半徑對耦光效率的影響 9
2-3.2偏位移對耦光效率的影響 10
2-4. 鍍金光纖的製作 11
2-4.1材料與儀器的準備 11
2-4.2蒸鍍儀器 12
2-4.3蒸鍍過程 12
2-4.4清洗過程 13
第三章 雙排線式模組的構裝 21
3-1. 雙排線式構裝 21
3-2. 雙排線式構裝的架構設計與流程 22
3-2.1基座的設計 22
3-2.2 DIP構裝流程 22
3-3. 元件與銲錫及助銲劑之功能和性質分析 24
3-4. DIP構裝裝置的介紹 27
3-5. 光纖固定的過程 27
第四章 雙排線式模組構裝結果與分析 37
4-1. 完成構裝之結果 37
4-2. 結果分析 37
4-3. 錫銲構裝技術的應用 38
4-3.1 980nm半導體雷射之構裝 38
4-3.2 980nm半導體雷射構裝結果 39
第五章 光纖光柵外部共振腔雷射模組構裝 47
5-1. 外部共振腔雷射原理簡介 47
5-2. 光纖光柵之理論 48
5-2.1 光纖光柵之製作 48
5-2.2 光纖光柵特性參數之量測 49
5-3. 外部共振腔雷射構裝技術 49
5-4. 外部共振腔雷射構裝後結果 50
5-4.1 FP雷射之光譜 51
5-4.2 構裝後光纖光柵外部共振腔雷射之功率-電流分析 51
5-4.3光纖光柵外部共振腔雷射之波長特性 52
5-5. 量測結果 52
5-6. 分析與討論 53
第六章 結論與未來工作 63
6-1. 結論 63
6-2. 未來工作 63
參考文獻 65
參考文獻
[1]“中華民國八十九年版科學技術年鑑”第三篇, 第二章.
[2]劉立仁,林士強,“FGL 光纖光柵技術雷射”光學工程, 第六十八期 (1999)
[3]Bellcore, ”Reliability Assurance Practices Optoelectronic Devices in Loop Applications”, Technical Advisory, TA-TSY-000983, Issue 1(1990)
[4]鄭木海,“雷射二極體構裝技術之近況與趨勢”光訊,第六十九期 (1997)
[5]D.C. Jou, H.M. Yang, M.H. Chen, S.H. Wu, and W.H. Cheng, ”An Optimum Approach for Fabrication of Tapered Hemispherical-End Fiber for Laser Module Packaging,” J. Electronic Materials, 30 (2001)
[6]M. Saruwatari, K. Nawata, “Semiconductor Laser to Single-Mode Fiber Coupling,” Applied Optics, Vol. 18, No. 11, pp. 1847-1856 (1979)
[7]C.W. Branard, W.Y. John, “Single-mode Fiber Microlens with Controllable Spot Size,” Applied Optics, Vol. 30, No. 15, pp. 1958-1962 (1991)
[8]H.M. Yang, T.S. Lay, C.W. Lee, S.N. Chang, W.H. Cheng, “Reduction of Microlens Imperfection due to Taper Asymmetry,” OECC2002, July 8-12, Kanagawa, Japan (2002)
[9]吳順浩,“法彼珀羅雷射與光纖光柵產生單頻光源之耦合研究”國立中山大學碩士論文 (2000)
[10]陳明鴻,“無鍍抗反射膜光纖光柵雷射光譜特性之研究”國立中山大學碩士論文 (2001)
[11]周明杰,“具PGC解調之光纖微小電流感測器”國立中山大學碩士論文 (1999)
[12]李天龍,“法彼珀羅雷射晶粒與光纖光柵構裝技術之研究”國立中山大學碩士論文 (1999)
[13]Raymond S. Enoch: “Electro-Optical Transducer Module and a Method of Fabricating Such a Module,” US patent, 4997253, Mar. 5 (1991)
[14]Raymond S. Enoch: “Method for Attaching an Optical Fiber to a Substrate to Form an Optical Fiber package,” US patent, 4702547, Oct. 27 (1987)
[15]Alan R. Mickelson, Nagesh R. Basavanhally, Yung-Cheng Lee, “Optoelectronic Packaging,” John Wiley & Sons, Inc. (1997)
[16]“嘉信雷射出廠值一覽表”,嘉信光電股份有限公司 (2000)
[17]鄧弘政,“雷射模組構裝中錫鉛與錫金銲料經老化測試微組織之研究”國立中山大學碩士論文 (2001)
[18]陳建宏,“半導體雷射構裝裂縫形成機制及錫銲固定光纖套管之研究”國立中山大學碩士論文 (1998)
[19]H. van Tongeren; P.J.A. Thijs; “Thermal aspects of pump-laser packaging,” Electronic Components and Technology Conference, Proceedings., 42nd , pp.848 —852 (1992)
[20]Shah, V.; Curtis, L.; Mahoney, D.D.; Andreadakis, N.C.; Favire, F.; Pathak, B.; Caneau, C.; Bhat, R.; Zah, C.E.; Young, W.C. “Packaging technology for high-power, singlemode-fiber-pigtailed pump laser modules for Er-doped fiber amplifiers,” Electronic Components and Technology Conference, Proceedings., 42nd , pp.842 —847 (1992)
[21]Pallab Bhattacharya. “Semiconductor Optoelectronic Device,” 2nd ed., Prentice-Hall International Inc., N.J. (1997)
[22]K. Petermann, “Laser Diode Modulation and Noise,” Kluwer Academic Publishers, MA (1988)
[23]楊慶忠,“光纖光柵的製作與應用”國立交通大學博士論文 (2000)
[24]W.H. Cheng, S.F. Chiu, C.Y. Hong, H.W. Chang, “Spectral Characteristics for a Fiber Grating External Cavity Laser,” Optical and Quantum Electronics, Vol. 33, pp.339-348 (2000)
[25]洪政洋,“半導體雷射高反射率及抗反射鍍膜之研究”國立中山大學光電所碩士論文 (1999)
[26]M. Premaratne, A. J. Lowery, Z. Ahmed, and D. Novak, “Modeling noise and modulation performance of fiber grating external cavity lasers,” IEEE J. Select. Topics Quantum Electron., vol. 3, pp. 290—303 (1997)
[27]C. R. Doerr, “Direct modulation of long-cavity semiconductor lasers,” J. Lightwave Technol., vol. 14, pp. 2052—2061 (1996)
[28]Ramunno, L.; Sipe, J.E. “Theory of large-signal direct modulation of extended cavity semiconductor lasers with dispersive loss,” IEEE J. Quantum Electronics, Volume: 36,pp.1299 -1311, Nov. (2000)
[29]Calvin M. Miller: “Temperature Compensated Fiber Bragg Gratings,” US patent, 6044189, Mar. 28 (2000)
[30]Gregory A. Merkel: “Optical device with negative thermal expansion substrate and uses therefore,” US patent, 6377729, Apr.23 (2002)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top