|
[1]J. M. Kuo et al., Semiconductor-Based Heterostructures, pp. 175-184, The Metallurgical Society, Inc. [2]A. Godefroy, A. Le Corre, and F. Clérot, “In1-xGaxAs/In0.53Ga0.47As strained superlattices grown by gas source molecular beam epitaxy,” Indium Phosphide and Related Materials, 1993. Conference Proceedings, pp. 143-146, 1993. [3]G. P. Agrawal and N. K. Dutta, Semiconductor Laser, 2nd ed., pp. 15-21,American Institute of Physics. [4]Y. Chen, J. E. Zucker, N. J. Sauer, and T. Y. Chang, “Polarization-independent strained InGaAs / InGaAlAs quantum-well phase modulators, ” IEEE Photon. Technol. Lett., vol. 4, pp. 1120-1123, 1992.[5]H. Q. Hou, and T. Y. Chang, “Nearly chirp-free electroabsorption modulation using InGaAs-InGaAlAs-InAlAs coupled quantum wells,” IEEE Photon. Technol. Lett., vol. 7, pp. 167-169, 1995.[6]A. Ougazzaden, and F. Devaux, “Strained InGaAsP/InGaAsP/InAsP multi-quantum well Structure for polarization insensitive electroabsorption modulator with high power saturation,” Appl. Phys. Lett., vol. 69, pp. 4131-4132, 1996.[7]J. S. Osinski, Y. Zou, and P. Grodzinski, “Low-threshold-current-density 1.5□m lasers using compressively strained InGaAsP Quantum Wells,” IEEE Photon. Technol. Lett., vol. 4, pp. 10-13, 1992.[8]A. Ougazzaden, D. Sigogne, and A. Mircea, “Atmospheric pressure MOVPE growth of high performance polarization insensitive strain compensated MQW InGaAsP/InGaAs optical amplifier,” Electronics Lett.,vol. 31, pp. 1242-1244, 1995.[9]Mark Silver, A. F. Phillips, and A. R. Adams, “Design and ASE characteristics of 1550-nm polarization-insensitive semiconductor optical amplifiers containing tensile and compressive wells,” IEEE Journal of Quantum Electronic, vol. 36, pp. 118-122, 2000.[10]L. F. Tiemeijer, P. J. A. Thijs, and T. van Dongen, “Polarization insensitive multiple quantum well laser amplifiers for the 1300 nm window,” Appl. Phys. Lett., vol. 62, pp. 826-828, 1993.[11]A. Godefroy, A. Le Corre, and F. Clérot, “1.55-□m polarization-insensitive optical amplifier with strain-balanced superlattice active layer, ” IEEE Photon. Technol. Lett., vol. 7, pp. 473-475, 1995.[12]M. A. Newkirk, B. I. Miller, and U. Koren, “1.55 □m multiquantum-well semiconductor optical amplifier with tensile and compressively strained wells for polarization-independent gain, ” IEEE Photon. Technol. Lett., vol. 4, pp. 406-408, 1993.[13]Katsuaki Magari, and Minoru Okamoto, “1.55 □m polarization-insensitive high-gain tensile-strained-barrier MQW optical amplifier, IEEE Trans. Photon. Technol. Lett., vol. 3, pp. 998-1000, 1991.[14]Katsuaki Magari, and Minoru Okamoto, “Polarization-insensitive optical amplifier with tensile-strained-barrier MQW structure, ” IEEE Journal of Quantum Electronic, vol. 30, pp. 695-701, 1994.[15]Jasprit Singh, Semiconductor optoelectronics, pp. 28-32, McGraw-Hill, Inc. [16]J. W. Matthews, and A. E. Blakeslee, “Defects in epitaxial multilayers,” J. Cryst. Growth, vol. 27, pp. 118-125, 1974.[17]H. Temkin, D. G. Gershoni, and S. N. G. Chu, “Critical layer thickness in strained Ga1-xInxAs/InP quantum wells,” Appl. Phys. Lett., vol. 55, pp. 1668-1670, 1989.[18]Pallab Bhattacharya, Semiconductor Optoelectronic Devices, 2nd ed. pp. 137, Prentice Hall International Editions.[19]C. Y—P Chao, and S. L. Chuang, “Spin-orbit-coupling effects on the valence-band structure of strained semiconductor quantum wells,” Phys. Rev. B, vol. 46, pp.4110-4122, 1992.[20]S. L. Chuang, Physics of optoelectronic devices, pp.707-711, A Wiley-Interscience Publication, New York. [21]Alex Harwit, and J. S. Harris, Jr, “Calculated quasi-eigenstates and quasi-eigenenergies of quantum well superlattices in an applied electric field,” Appl. Phys. Lett., vol. 60, pp. 3211-3213, 1986.[22]T. Y. Chang and A. Izabelle, “Full range analytic approximations for Fermi energy and Fermi-Dirac integral F-1/2 in terms of F1/2,” J. Appl. Phys., vol. 65, pp. 2162-2164, 1989.
|