|
[1]S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” J. Lightwave Technol., vol. 14, pp. 955-966, 1996.[2]S. J. B. Yoo, M. A. Koza, C. Caneau, and R. Bhat, “Simultaneous wavelength conversion of 2.5-Gbit/s and 10-Gbit/s signal channels by difference-frequency generation in an AlGaAs waveguide,” OSA Tech. Dig. Ser., Conf. Optical Fiber Communications, vol. 2, paper WB5, 1998.[3]C. Q. Xu, H. Okayama, and M. Kawahara, “1.5mm-band efficient in a periodically domain-inverted LiNbO3 channel waveguide,” Appl. Phys. Lett., vol. 63, pp. 3559-3561, 1993.[4]C. Q. Xu, H. Okayama, and T. Kamijoh, “LiNbO3 quasi-phase-matched wavelength converter and its module,” Proc. Eur. Conf. Optical Communications, pp. 173-174, 1998.[5]M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5mm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photonics Technol. Lett., vol. 11, pp. 653-655, 1999.[6]K. Gallo, G. Assanto, and G. Stegeman, “Efficient wavelength shifting over the erbium amplifier bandwidth via cascaded second order processes in lithium niobate wavelength,” Appl. Phys. Lett., vol. 71, pp. 1020-1022, 1997.[7]A. Yariv, “Opeical electrionics in modern communications,” New York Oxford, Ch. 8, 1997.[8]J. A. Armstrong, N. Blombergen, J. Ducuing, and P. S. Pershan, “Interacton between light waves in a nonlinear dielectric,” Phys. Rev., vol. 127, pp. 1918-1939, 1962.[9]D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate,” Opt. Lett., vol. 22, pp. 1553-1555, 1997.[10]林宜慶, “高電壓致鈮酸鋰小週期區域反轉與動力學研究,” 國立台灣大學光電工程學研究所碩士論文, 1999.[11]T. Volk, M. Wohlecke, N. Rubinina, N. V. Razumovski, F. Jermann, C. fischer, and R. Bower, “LiNbO3 with the damage-resistant impurity indium,” Appl. Phy., vol. 60, pp. 217-225, 1995.[12]L. H. Peng, Y. C. Zhang, and Y. C. Lin, “Zinc oxide doping effects in polarization switching of lithium niobate,” Appl. Phys. Lett., vol. 78, pp.1-3, 2001.[13]D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett., vol. 44, pp. 847-849, 1984.[14]K. Niwa, Y. Furukawa, S. Takekawa, and K. Kitamura, “Growth and characterization of Mgo doped near stoichiometric LiNbO3 crystals as a new nonlinear optical material,” Journal of Crystal Growth, vol. 208, pp. 493-500, 2000.[15]E. J. Lim, M. M. Fejer, R. L. Byer, and W. J. Kozlovsky, “Blue light generation by frequency doubling in periodically poled lithium niobate channel waveguide,” Electrom. Lett., vol. 25, pp. 731-732, 1989.[16]J. R. Carruthers, G. E. Peteson, and M. Grasso, “Nonstoichiometry and crystal growth of lithium niobate,” J. Appl. Phys., vol. 42, pp. 1846-1851, 1971.[17]C. S. Lau, P. K. Wei, C. W. Su, and W. S. Warry, “Fabrication of magnesium-oxide-induced lithium out-diffusion waveguides,” IEEE Photon. Lett., vol. 4, pp. 872-875 , 1992.[18]Y. Y. Zhi, S. N. Zhu, and J. F. Hong, “Domain inversion in LiNbO3 by proton exchange and quick heat treatment,” Appl. Phys. Lett., vol. 65, pp. 558-560, 1994.[19]H. Ito, C. Takyu and H. Inaba, “Fabrication of periodic domain grating in LiNbO3 by electron beam writing for application of nonlinear optical processes,” Electron. Lett., vol. 27, pp. 1221-1222 , 1991. [20]D. Feng, N. B. Ming, J. F. Hong, Y. S. Zhu, and Y. N. Wang, “Enhancement of second-harmonic generation in LiNbO3 crystal with periodic laminar ferroelectric domains,” Appl. Phys. Lett., vol. 37, pp. 607-609, 1980. [21]I. Camlibel, “Spontaneous polarization measurements in several ferroelectric oxides using pulsed-field method,” J. Appl. Phys., vol. 40, pp. 1690-1693, 1969.[22]M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodical poled by applying an external field for efficient blue second harmonic generation,” Appl. Phys. Lett., vol. 62, pp. 435-436, 1993.[23]L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenbeg, and J. W. Pierce, “Quasi-phase matched optical parametric oscillators in bulk periodically poled LiNbO3 ,” J. Opt. Soc. Am. B., vol 12, pp. 2102-2116, 1995.[24]C. A. Burrus, J. Stone, “Single crystal fiber optical devices: a Nd:YAG fiber laser, ” Appl. Phys. Lett., vol. 26, pp. 318-320, 1975.[25]G. A. Magel, M. M. Fejer, R. L. Byer, “Quasi phase matched second harmonic generation of blue light in periodically poled LiNbO3,” Appl. Phys. Lett., vol. 56, pp. 108-110, 1990. [26]Y. S. Luh, R. S. Feigelson, M. M. Fejer, and R. L. Byer, “Ferroelectric domain structures in LiNbO3 single crystal fiber,” J. of Crystal Growth, vol. 78, pp. 135-143, 1986.[27]C. Kittel, “Introduction to solid state physics,” 7th., 1997.[28]M. Houe, and P. D. Town, “An introduction to methods of periodic poling for second-harmonic generation,” D: Appl. Phys., vol. 28, pp. 1747-1763, 1995.[29]N. Ohnishi, and T. Lizuka, “Etching study of microdomains in LiNbO3 single crystals,” J. of Appl. Phys., vol. 46, pp. 1063-1067, 1975.[30]J. C. Chen, and Y. C. Lee, “The influence of temperature distribution upon the structure of LiNbO3 crystal rods grown using the LHPG method,” J. of crystal Growth, vol. 208, pp.508-512, 2000.[31]K. Nassou, H. J. Levinstein, and G. M. Loiacono, “Ferroelectric lithium niobate. 2. Preparation of single domain crystals,” J. Phys. Chem. Solids, vol. 27, pp. 989-996, 1966. [32]A. A. Ballman, and H. Brown, Ferroelectrics, vol. 4, pp. 189, 1972.
|