跳到主要內容

臺灣博碩士論文加值系統

(44.210.132.31) 您好!臺灣時間:2022/08/19 19:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林嘉進
研究生(外文):Chia-Jin Lin
論文名稱:準相位匹配鈮酸鋰晶纖之研製
論文名稱(外文):The Study and Fabrication of Quasi-phase-matched LiNbO3 Crystal Fiber
指導教授:黃升龍
指導教授(外文):Sheng-Lung Huang
學位類別:碩士
校院名稱:國立中山大學
系所名稱:光電工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:76
中文關鍵詞:準相位匹配
外文關鍵詞:PPLN
相關次數:
  • 被引用被引用:4
  • 點閱點閱:168
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
鈮酸鋰由於易於生長,且具有高的非線性係數、良好的光學品質,因而廣泛地應用於光頻率轉換、電光調制、表面音頻濾波、光折變記錄等領域。
本論文之研究目的在於發展出鈮酸鋰晶纖之準相位匹配結構,以應用於波長轉換器,利用雷射加熱基座生長法之架構外加一高電場導致週期性區域反轉結構之鈮酸鋰晶纖 。在結構設計方面,我們以串接二階非線效應作為基礎,設計了在1.55□m光纖通訊波段之波長轉換器,其對幫浦光及信號光之頻寬分別為0.78nm和80nm。在實驗上,我們成功地製作出以a軸生長之單域鈮酸鋰晶纖,並進而利用外加不同的週期電場強度探討區域反轉的機制。我們可以成功地在居里溫度附近以1kV/mm之外加電場在直徑為190□m之鈮酸鋰晶纖上,製作週期為18.9□m的週期性區域反轉結構,此技術將有助於發展高效率的非線性光學頻率轉換技術與元件。
Lithium niobate(LiNbO3) has been widely used in optical frequency converter, electro-optical modulator, surface acoustic waveguide filter, and photorefractive recording due to its ease of growth, high nonlinear coefficient, and excellent optical quality.

In this thesis, we report the use of laser-heated-pedestal growth technique on LiNbO3 crystal fibers with in-situ electric field. In the process of the wavelength conversion, based on the cascaded second-order nonlinearity, we designed a 1.55-mm-band wavelength converter in optical communication, which has spectral widths for the pumping source and the output signal of 0.78nm and 80nm, respectively. In the experiment, we had grown a-axis single domain LiNbO3 crystal fiber. We also studied the dynamics of poling mechanism for various electric field. We applied 1kV/mm electric field near the Curie temperature on the LiNbO3 with the diameter up to 190mm and got a periodic domain structure of 18.9mm. The techniques are expected to be useful for in high-efficient nonlinear optical applications.
中文摘要Ⅰ
英文摘要Ⅱ
圖目錄Ⅲ
表目錄
第一章緒論1
第二章相位匹配原理與區域反轉機制4
2.1雙折射相位匹配4
2.2準相位匹配12
2.3區域反轉機制19
2.4區域反轉結構製作方式22
第三章單域鈮酸鋰晶纖之製作26
3.1生長方法與架構26
3.2鑲埋、研磨、拋光及蝕刻33
3.3特性量測40
第四章準相位匹配元件之研製47
4.1元件設計47
4.2腔外高壓電場極化反轉51
4.3腔內外加電場極化反轉55
4.4結果與分析60
第五章結論與未來展望61
參考文獻62
中英對照表67
[1]S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” J. Lightwave Technol., vol. 14, pp. 955-966, 1996.[2]S. J. B. Yoo, M. A. Koza, C. Caneau, and R. Bhat, “Simultaneous wavelength conversion of 2.5-Gbit/s and 10-Gbit/s signal channels by difference-frequency generation in an AlGaAs waveguide,” OSA Tech. Dig. Ser., Conf. Optical Fiber Communications, vol. 2, paper WB5, 1998.[3]C. Q. Xu, H. Okayama, and M. Kawahara, “1.5mm-band efficient in a periodically domain-inverted LiNbO3 channel waveguide,” Appl. Phys. Lett., vol. 63, pp. 3559-3561, 1993.[4]C. Q. Xu, H. Okayama, and T. Kamijoh, “LiNbO3 quasi-phase-matched wavelength converter and its module,” Proc. Eur. Conf. Optical Communications, pp. 173-174, 1998.[5]M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5mm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photonics Technol. Lett., vol. 11, pp. 653-655, 1999.[6]K. Gallo, G. Assanto, and G. Stegeman, “Efficient wavelength shifting over the erbium amplifier bandwidth via cascaded second order processes in lithium niobate wavelength,” Appl. Phys. Lett., vol. 71, pp. 1020-1022, 1997.[7]A. Yariv, “Opeical electrionics in modern communications,” New York Oxford, Ch. 8, 1997.[8]J. A. Armstrong, N. Blombergen, J. Ducuing, and P. S. Pershan, “Interacton between light waves in a nonlinear dielectric,” Phys. Rev., vol. 127, pp. 1918-1939, 1962.[9]D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate,” Opt. Lett., vol. 22, pp. 1553-1555, 1997.[10]林宜慶, “高電壓致鈮酸鋰小週期區域反轉與動力學研究,” 國立台灣大學光電工程學研究所碩士論文, 1999.[11]T. Volk, M. Wohlecke, N. Rubinina, N. V. Razumovski, F. Jermann, C. fischer, and R. Bower, “LiNbO3 with the damage-resistant impurity indium,” Appl. Phy., vol. 60, pp. 217-225, 1995.[12]L. H. Peng, Y. C. Zhang, and Y. C. Lin, “Zinc oxide doping effects in polarization switching of lithium niobate,” Appl. Phys. Lett., vol. 78, pp.1-3, 2001.[13]D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett., vol. 44, pp. 847-849, 1984.[14]K. Niwa, Y. Furukawa, S. Takekawa, and K. Kitamura, “Growth and characterization of Mgo doped near stoichiometric LiNbO3 crystals as a new nonlinear optical material,” Journal of Crystal Growth, vol. 208, pp. 493-500, 2000.[15]E. J. Lim, M. M. Fejer, R. L. Byer, and W. J. Kozlovsky, “Blue light generation by frequency doubling in periodically poled lithium niobate channel waveguide,” Electrom. Lett., vol. 25, pp. 731-732, 1989.[16]J. R. Carruthers, G. E. Peteson, and M. Grasso, “Nonstoichiometry and crystal growth of lithium niobate,” J. Appl. Phys., vol. 42, pp. 1846-1851, 1971.[17]C. S. Lau, P. K. Wei, C. W. Su, and W. S. Warry, “Fabrication of magnesium-oxide-induced lithium out-diffusion waveguides,” IEEE Photon. Lett., vol. 4, pp. 872-875 , 1992.[18]Y. Y. Zhi, S. N. Zhu, and J. F. Hong, “Domain inversion in LiNbO3 by proton exchange and quick heat treatment,” Appl. Phys. Lett., vol. 65, pp. 558-560, 1994.[19]H. Ito, C. Takyu and H. Inaba, “Fabrication of periodic domain grating in LiNbO3 by electron beam writing for application of nonlinear optical processes,” Electron. Lett., vol. 27, pp. 1221-1222 , 1991. [20]D. Feng, N. B. Ming, J. F. Hong, Y. S. Zhu, and Y. N. Wang, “Enhancement of second-harmonic generation in LiNbO3 crystal with periodic laminar ferroelectric domains,” Appl. Phys. Lett., vol. 37, pp. 607-609, 1980. [21]I. Camlibel, “Spontaneous polarization measurements in several ferroelectric oxides using pulsed-field method,” J. Appl. Phys., vol. 40, pp. 1690-1693, 1969.[22]M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodical poled by applying an external field for efficient blue second harmonic generation,” Appl. Phys. Lett., vol. 62, pp. 435-436, 1993.[23]L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenbeg, and J. W. Pierce, “Quasi-phase matched optical parametric oscillators in bulk periodically poled LiNbO3 ,” J. Opt. Soc. Am. B., vol 12, pp. 2102-2116, 1995.[24]C. A. Burrus, J. Stone, “Single crystal fiber optical devices: a Nd:YAG fiber laser, ” Appl. Phys. Lett., vol. 26, pp. 318-320, 1975.[25]G. A. Magel, M. M. Fejer, R. L. Byer, “Quasi phase matched second harmonic generation of blue light in periodically poled LiNbO3,” Appl. Phys. Lett., vol. 56, pp. 108-110, 1990. [26]Y. S. Luh, R. S. Feigelson, M. M. Fejer, and R. L. Byer, “Ferroelectric domain structures in LiNbO3 single crystal fiber,” J. of Crystal Growth, vol. 78, pp. 135-143, 1986.[27]C. Kittel, “Introduction to solid state physics,” 7th., 1997.[28]M. Houe, and P. D. Town, “An introduction to methods of periodic poling for second-harmonic generation,” D: Appl. Phys., vol. 28, pp. 1747-1763, 1995.[29]N. Ohnishi, and T. Lizuka, “Etching study of microdomains in LiNbO3 single crystals,” J. of Appl. Phys., vol. 46, pp. 1063-1067, 1975.[30]J. C. Chen, and Y. C. Lee, “The influence of temperature distribution upon the structure of LiNbO3 crystal rods grown using the LHPG method,” J. of crystal Growth, vol. 208, pp.508-512, 2000.[31]K. Nassou, H. J. Levinstein, and G. M. Loiacono, “Ferroelectric lithium niobate. 2. Preparation of single domain crystals,” J. Phys. Chem. Solids, vol. 27, pp. 989-996, 1966. [32]A. A. Ballman, and H. Brown, Ferroelectrics, vol. 4, pp. 189, 1972.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top