跳到主要內容

臺灣博碩士論文加值系統

(3.238.204.167) 您好!臺灣時間:2022/08/09 21:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許芝菁
研究生(外文):Chih-Ching Hsu
論文名稱:聚甲基榖氨酸烷基酯之相行為
論文名稱(外文):Phase Behavior of Poly(γ-alkyl-L-glutamate)s
指導教授:蘇安仲
指導教授(外文):An-Chung Su
學位類別:碩士
校院名稱:國立中山大學
系所名稱:材料科學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:231
中文關鍵詞:六方柱狀結構層狀結構膽固醇型液晶單斜疊積擬六方結構側鏈結晶
外文關鍵詞:monoclinic packingcholesteric liquid crystalshexagonal columnar structurelayer structurepseudohexagonal structureside chain crystallize
相關次數:
  • 被引用被引用:3
  • 點閱點閱:157
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:1
本研究是探討接上不同鏈長烷基側鏈的poly(γ-methyl -L- glutamate)衍生物之相變化與分子疊積。利用酯交換反應,將poly(γ-methyl-L- glutamate)分別接上六、十二、十八個碳之直鏈烷基,以及市售之poly(γ-methyl -L- glutamate)、poly(γ-ethyl -L- glutamate)樣品 (簡稱為PG-m, m為側基碳數) ,主要研究工具包括,微差掃描卡計 (DSC) 、偏光顯微鏡 (PLM) 和X光繞射儀 (XRD)。
DSC實驗觀察顯示PG-1、PG-2之玻璃轉移溫度 (Tg) 約在10 oC左右,PG-6、PG-12並無觀察到明顯相變化。而PG-18在 50 oC∼60 oC附近有兩個放熱峰,其熱焓量分別為53.2 J/g 及19.3 J/g。
在PLM的觀察五個樣品都具有膽固醇液晶特有之光學紋理,在我們所合成的PG-6、PG-12、PG-18於澆鑄薄膜的樣品上都觀察到了六角形單晶的存在,經升溫掃描後六角形單晶約於160 oC消失,若是升溫至Ti後冷卻並不再出現。其中以PG-18之觀察最為有趣,於室溫下可觀察到為漂亮之結晶,升溫至52 oC後馬上光學紋理變暗幾乎無雙光性,過了60 oC後光學紋理馬上變亮呈現的是膽固醇液晶特有的指紋般紋理,升溫至250 oC一些液晶亮點開始流動,至260 oC進入等向性相 (isotropic phase) 冷卻至室溫可觀察到相同的過程,所以整個過程是可逆的。
升溫的XRD實驗顯示PG-1於室溫有一間距 (d-spacing) 為1.06 nm的擬六方結構 (pseudohexagonal)。隨著溫度升高其結構越好,升溫約至100 oC後慢慢轉為六方柱狀結構 (hexagonal columnar phase) 280 oC後結構消失冷卻過程亦是從高溫的六方柱狀結構回到室溫結構較差的擬六方結構。根據文獻的報告PG-2在120 oC前為擬六方結構,本研究亦觀察到其 (100) 面間距為1.17 nm的擬六方結構,120 oC後其結構規則度變佳,轉為六方柱狀結構其 (100) 面間距轉為1.14 nm,隨溫度升高結構越好,直至300 oC後結構逐漸消失,冷卻過程為六方柱狀結構,至120 oC以下又呈現結構規則度差的擬六方柱狀結構,其過程為可逆。PG-6之實驗觀察結果顯示,分子在空間中疊積成層狀結構與六方柱狀結構,冷卻時兩種結構均會再現而冷卻至120 oC以下其結構變差,應是低於室溫下有結晶相所致,其兩結構仍可維持至室溫。而PG-12顯示分子疊積成層狀結構,其層距約2.74 nm,升溫至280 oC後結構消失,冷卻時層狀結構可維持至室溫但結構比較不好應是低於室溫下有結晶相所致。最後PG-18於52 ℃以下是結晶相,是由於側鏈烷基結晶所致其側鏈結晶做六方疊積及單斜疊積(hexagonal packing + monoclinic packing) 而52 oC∼60 oC亦為側鏈結晶但其側鏈結晶僅做單斜疊積 (monoclinic packing) ,這個部分與DSC跟PLM的實驗觀察相符。在60 oC以上其PLM下之光學紋理近乎膽固醇型 (Cholesteric) 液晶,但在XRD結果顯示分子在空間中疊積成層狀結構,其層距約為3.38 nm。
本研究所觀察到的結果顯示,隨著烷基側鏈鏈長的改變,Poly(γ-alkyl-L-glutamate)s系統顯示豐富的相變化與結構排列。烷基側鏈六個碳以下之衍生物主結構為六方柱狀結構。側鏈鏈長為六個碳者則具兩種結構分別為層狀及六方柱狀結構,而側鏈鏈長為十二、十八個碳者其主要結構為層狀,側鏈長十八個碳的樣品還會排列成側鏈結晶。
另外PG-6、PG-12、PG-18其分子在溶液中會形成液向型液晶的結構,此結構在溶劑乾燥過程中會被遺留下來,參考分子模擬計算之結果判斷應為層狀結構中之主鏈間距離,其間距約為1.25 nm,升高溫度約至130 oC後這結構就變大為1.76 nm約220 oC後消失,且降溫後並無觀察到。
Thermal behavior and molecular packing of a series of α-helical poly(L-glutamates), with n-alkyl side chain of various lengths (m(number of carbons in the alkyl group) = 1, 2, 6, 12,18), were studied by means of differential scanning calorimetry, polarizing light microscopy and X-ray diffraction.
For polymers of m = 1 and 2, There is a pseudohexagonal structure below ca. 130 oC and above this temperature the stable phase is the hexagonal columnar phase. There exists a layered structure in the polymer of m = 6, as well as a solvent induced hexagonal columnar structure which formed during solution casting process.
In the polymer of m = 12, a layered structure was formed in the temperature range between 20 to 255 oC. However, for longer side chain, m = 18, tendency of crystallization of alkyl long side chain forced the backbone to pack into layer structure. There are two distinct melting temperature at ca. 60 oC, and the enthalpy are ca. 53 and 19 J/g, which corresponding to the melting of hexagonal and monoclinic side chain crystallines.
The polymers with longer side chain (m = 6, 12 and 18) tend to be lyotropic liquid crystalline phase within lamellar inter-rod distance of 1.25 nm in solution state, and the structure will remain after drying. However, the inter-rod distance will collapse at the temperature above ca. 200 ℃ and will not recover after cooling.
致謝
英文摘要
中文摘要
圖目錄…………………………………………………………………..-1-
表目錄…………………………………………………………………-15-
壹、 前言…………………………………………………………………1
1.1 熱向型液晶………………………………………………………….2
1.2 液向型液晶………………………………………………………….4
貳、研究動機與文獻回顧……………………………………………….6
參、實驗方法
3.1 藥品………………………………………………………………...10
3.2 合成方法…………………………………………………………...11
3.3 實驗方法與儀器使用……………………………………………...12
3.4 合成步驟與結果…………………………………………………...18
肆、實驗結果與討論
4.1 PG-1實驗結果與討論…....…...……………………………………20
4.2 PG-2實驗結果與討論…………..…...……………….….…………44
4.3 PG-6實驗結果與討論……..……..….…………..………………....77
4.4 PG-12實驗結果與討論……….………..………………..…...…...122
4.5 PG-18實驗結果與討論…………..…..…………..…………….…161
伍、結論………………….………………………….……..……….....215
陸、參考文獻………………………………………………………….230
1.Chandrasekhar, S. Liquid Crystal 1992.
2.Watanabe, J. Ono, H. Uematsu, I. Abe, A. Macromolecules 1985, 18, 2141.
3.Morawetz, H, Post, B. Hsieh, H. W. S. J. Polym. Sci., Polym. Phys. Ed. 1976, 14, 1241.
4.Campa, I. Rienda, M. Ramos,G. J. Polym. Sci., Polym. Phys. Ed. 1980, 18, 2197.
5.Ballauff, M. Schmidt, G. F. Cryst. Liq. Cryst. 1987, 147, 163.
6.Rodrigues-Parada, J. M. Duran, R. Wegner, G. Macromolecules 1989, 22, 2507.
7.Ebert, M. Herrmann-Schenherr, O. Wendorf, J. Ringsdorf, H. Tschirner, P. Liq Cryst. 1990, 11, 249.
8.Harkness, B. R. Watanabe, J. Macromolecules 1991, 24, 6759.
9.Watanabe, J. Harkness, B. R. Sone, M. Polymer. J. 1992, 24, 1119.
10.Damman, S. B. Vroege, G. J. Polymer. J. 1993, 34, 2773, 2777.
11.Watanabe, J. Harkness, B. R. Sone, M. Ichimura, H. Macromolecules 1994, 27, 507.
12.Watanabe, J. Sekine, N. Nematsu, T. Sone, M. Macromolecules 1996, 29, 4816.
13.Sakaki, S. Nakamura, T. Uematsu, I. J. Polym. Sci., Polym. Phys. Ed. 1979, 17, 825.
14.Watanabe, J. Fukuda, Y. Gehani, R. Uematsu, I. Macromolecules 1984, 17, 1004.
15.Watanabe, J. Goto, M. Nagase, T. Macromolecules 1987, 20, 298.
16.Watanabe, J. Naka, M. Watanabe, K. Uematsu, I. Polymer. J. 1978 10, 569.
17.Smith, J. Woody, R. W. Biopolymers 1973, 12, 2657.
18.Watanabe, J. Nagase, T. Macromolecules 1988, 21, 171.
19.Guerra, S. Ilarduya, A. Morillo, M. Melis, Polymer. 2001, 42, 9319.
20.Watanabe, J. Takashina, Y. Macromolecules 1991, 24, 3423.
21.Yamanobe, T. Tsukahara, M. Komoto, T. Watanabe, J. Ando, I. Uematsu, I. Deguchi, K. Fujito, T. Imanari, M. Macromolecules 1988, 21, 48.
22.Livolant, F. Bouligand, Y. J. Physique 1986, 47, 1813.
23.Lee, S. Meyer, R. B. Liquid crystal 1990, 7, 451.
24.Watanabe, J. Imai, K. Gehani, R. Uematsu, I. J. Polym. Sci., Polym. Phys. Ed. 1981, 19, 653.
25.Hentschke, R. Macromolecules 1990, 23, 1192.
26.Burghardt, W. R. Hongladarom, K. Macromolecules 1993, 26, 785.
27.Akihiro, Abe. Jiaping, L. Hidemine, F. Satoshi, O. Macromolecules 1996, 29, 2584.
28.Watanabe, J. Fukuda, Y. Gehani, R. Uematsu, I. Macromolecules 1984, 17, 1004.
29.Watanabe, J. Goto, M. Nagase, T. Macromolecules 1987, 20, 298.
30.Watanabe, J. Sasanuma, A. E. Uematsu, I. Polym. 1984, 25, 698.
31.Foster, D. Vierheller, R. Langmuir 1997, 13, 1712.
32.Kumacheva, E. Kitaev, V. Langmuir 1998, 14, 5568.
33.Kumacheva, E. Sohn, D. Kitaev, V. Langmuir 1999, 15, 1698.
34.Niwa, M. Morikawa, M. Higashi, N. Langmuir 1999, 15, 5088.
35.Tirrell, A. Ponomarenko, A. Waddon, J. Bakeev, N. Mackhight, J. Macromolecules 1996, 29, 4340.
36.Ito, S. Mebuchi, M. Yamamoto, M. Miyamoto, T. Macromolecules 1998, 31, 8802.
37.Jaebum, C. Sangmi, J. Daewon, S. Soo, L. Polymer. 2001, 42, 9915.
38.Yamanobe, T. Tsukahara, M. Komoto, T. Watanabe, J. Ando, I. Uematsu, I. Deguchi, K. Fujito, T. Imanari, M. Macromolecules 1988, 21, 48.
39.Calvet, T. Ventola, L. Ramirez, M. Solans, X. Diarte,M. A. Chem. Mater. 2001,Ventol'a et al.
40.Gieniewski, C. Moore, R. S. Macromolecules 1970, 3, 97.
41.Sakaki, S. Nakamura, T. Uematsu, I. J. Polym. Sci., Polym. Phys. Ed. 1979, 17, 825.
42.Shibav, V. P. Petrukhin, B. S. Plat, N. A. Kargin, V. A. Vysokomol. Soyed. 1968, 1, 216.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top