跳到主要內容

臺灣博碩士論文加值系統

(3.229.124.74) 您好!臺灣時間:2022/08/11 08:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃雅玲
研究生(外文):Ya-Ling Huang
論文名稱:銅對裂片石蓴(UlvafasciataDelile)(Ulvales,Chlorophyta)磷的利用之影響
論文名稱(外文):Effects of copper on phosphorus utilization in Ulva fasciata Delile (Ulvales, Chlorophyta)
指導教授:李澤民李澤民引用關係
指導教授(外文):Tse-Min Lee
學位類別:碩士
校院名稱:國立中山大學
系所名稱:海洋生物研究所
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:51
中文關鍵詞:裂片石蓴磷的吸收
外文關鍵詞:phosphorusUlva fasciatacopperPi uptake
相關次數:
  • 被引用被引用:4
  • 點閱點閱:219
  • 評分評分:
  • 下載下載:24
  • 收藏至我的研究室書目清單書目收藏:1
本研究主要的目的是在探討裂片石蓴 (Ulva fasciata Delile) 在過量銅環境下藻體內銅累積情形以及對藻體碳、氮與磷的影響。不同銅濃度處理下,U. fasciata的每日比生長速率 (daily specific growth rate) 與總磷含量隨著銅濃度的增加而減少,而藻體總銅含量、細胞壁銅含量與細胞內銅含量則隨銅濃度增加而增加,由每日比生長速率與外加銅濃度之關係發現U. fasciata忍受銅濃度的上限為100 uM。以不同濃度的銅處理4日後,U. fasciata的Pi 吸收顯著地受到抑制,同時由藻體不同磷的成分變化知藻體總磷減少含量主要是因為總可溶性磷 (total soluble phosphorus, TSP) 與可溶性磷 (soluble reactive phosphorus, SRP) 含量的減少;所以,銅造成總磷含量下降原因之一可能是因銅抑制U. fasciata磷之吸收以致細胞內可利用之可溶性磷含量不足。在100 uM 銅處理之時間序列變化實驗,每日比生長速率及藻體總磷含量在第4日後顯著下降而TTC還原能力則隨時間而降低,藻體總銅含量在處理初期即增為對照組 (0 uM) 的10倍後維持不變,第3日始又增加。由試驗結果可以找出每日比生長速率以及藻體總磷含量的IC50 (concentration of 50 % inhibition),每日比生長速率的IC50在ASW中以及藻體內分別為9.8 uM 以及0.76 mg.g-1 DW ,而藻體總磷含量之IC50則分別為37.8 uM 以及1.44 mg.g-1 DW。銅會抑制U. fasciata的生長,並且累積在藻體以及細胞壁,藻體累積的銅會影響其生理、代謝作用,抑制Pi 吸收,使得可以利用的磷減少,造成藻體的總磷含量下降。
The effects of copper on growth and phosphorus (P) utilization were investigated in the marine chlorophyte Ulva fasciata Delile. Both the daily specific growth rate and tissue P contents decreased as increasing CuSO4 concentrations, while the contents of total tissue, intracellular and cell-wall Cu increased. Based on the relationship between daily specific growth rate and external CuSO4 concentrations, the upper limit of U. fasciata is 100 uM CuSO4. After 4-day exposure to varying CuSO4 concentrations, Pi uptake was inhibited. Analysis of P fraction in U. fasciata exposed to 100 uM CuSO4 shows that the Cu-induced decline in total tissue P contents is mainly due to a decrease in both soluble reactive P (i.e. Pi). Exposure to 100 uM of Cu caused the accumulation of total tissue Cu contents to a plateau and then rose again at day 3, and tissue P contents and daily specific growth rate decreased at day 4. IC50 (concentration of 50 % inhibition) of daily specific growth rate and tissue P contents are 9.8 and 37.8 uM of Cu concentration in the medium, respectively, and 0.76 and 1.44 mg.g-1 DW for total tissue Cu contents, respectively. Overall, Cu causes Cu accumulation in intracellular space and cell wall and decrease of growth and P contents of U. fasciata partly via Pi uptake inhibition.
一、前言
二、材料與方法
﹙一﹚材料栽培及處理
試驗一 不同銅濃度處理之外表型態與生理反應試驗
試驗二 銅處理之時間序列試驗
試驗三 銅處理與Pi 吸收之關係
﹙二﹚分析方法
1. 每日比生長速率 (daily specific growth rate) 測定
2. 藻體總碳含量測定
3. 藻體總氮及總磷含量測定
4. 藻體總溶解磷、溶解可利用磷與固體磷含量測定
5. 藻體銅含量測定
6. 水樣無機磷 (DIP) 含量測定
7. TTC還原能力
8. 統計分析
三、結果
﹙一﹚銅處理下裂片石蓴外表形態、生長與內部組成之變化
1. 外表型態與生長
2. 銅含量分析
3. C、N、P、TSP與SRP含量分析
﹙二﹚100 uM銅處理裂片石蓴之時間序列變化
1. 每日比生長率與TTC還原能力
2. 銅含量分析
3. C、N、P、TSP與SRP含量分析
﹙三﹚銅處理與Pi 吸收之關係
四、討論與結論
參考文獻
石界智,2001。台灣附近海域鯨豚體內金屬之研究。國立中山大學海洋資源學系研究所碩士論文。台灣,中華民國。江永棉與王瑋龍,1986。墾丁國家公園內海藻之研究。保育研究報告第35之1號。台灣,中華民國。陳敏華,1998。裂片石蓴 (Ulva fasciata) (Ulvales, Chlorophyta) 多元胺 (polyamines) 與低鹽逆境之關係。國立中山大學海洋生物研究所碩士論文。台灣,中華民國。蔡娟娟,2000。營養鹽與溫度對墾丁南灣大型海藻生物量之影響。國立中山大學海洋生物研究所碩士論文。台灣,中華民國。Adalsteinsson, S. 1994. Compensatory root growth in winter wheat: effects of copper exposure on root geometry and nutrient distribution. Journal of Plant Nutrition. 17: 1501-1512.Angelov, M., T. Tsonev, A. Uzunova and K. Gaidardjieva. 1993. Cu2+ effect upon photosynthesis, chloroplast structure, RNA and protein synthesis of of pea plants. Photosynthstica. 28: 341-350.Brown, M. T., W. M. Hodgkinson and C. L. Hurd. 1999. Spatial and temporal variations in the copper and zinc concentrations of two green seaweeds from Otago Harbour, New Zealand. Marine Environmental Research. 47: 175-184.Burdin, K. S. and K. T. Bird. 1994. Heavy metal accumulation by carrageenan and agar producing algae. Botanica Marina. 37: 467-470.Cater, M. R. 1993. Soil Sampling and Methods of Analysis. Boca Raton Lewis Publishers.Chang, W. C., M. H. Chen and T. M. Lee. 1999. 2,3,5-Triphenyltetrazolium reduction in the viability assay of Ulva fasciata (Chlorophyta) in response to salinity stress. Botanical Bulletin of Academia Sinica. 40: 207-212.Chen, F. H., W. Q. Chen and S. G. Dai. 1994. Toxicities of 4 arsenic species to Scenedesmus obliguus and influence of phosphate on inorganic arsenic toxicities. Toxicological and Environmental Chemistry. 41: 1-7.De Vos, C. H. R., H. Schat, M. A. M. De Waal, R. Vooijs and W. H. O. Ernst. 1991. Increased resistance to copper-induced damage of the root cell plasmalemma in copper tolerant Silene cucubalus. Physiologia Plantarum. 82: 523-528.Fernandes, J. C. and F. S. Henriques. 1991. Biochemical, physiological, and structural effects of excess copper in plants. Botanical Review. 57: 246-273.Fernández, J. A. and M. J. García-Sánshez. 1994. Photosynthetic induction of dual phosphate uptake kinetics in Porphyra umbilicalis. Physiologia Plantarum. 91: 581-586.Flynn, K. J., H. Opik, and P. J. Syrett. 1986. Localization of the alkaline phosphatase and 5’-nucleotidase activities of the diatom Phaeodactylum tricornutum. Journal of Genetic Microbiology. 132: 289-298.Fong, P., J. B. Zedler, and R. M. Donohoe, 1993. Nitrogen vs. phosphorus limitation of algal biomass in shallow coastal lagoons. Limnology and Oceanography. 38: 906-923.Fytianos, K., E. Evgenidou and G. Zachariadis. 1999. Use of macroalgae as biological indicators of heavy metal pollution in Thermaikos Gulf, Greece. Bulletin of Environmental Contamination and Toxicology. 62: 630-637.Gauthier, D. A. and D. H. Turpin. 1994. Inorganic phosphate (Pi) enhancement of dark respiration in the Pi-limited green alga Selenastrum minutum. Plant Physiology. 104: 629-637.Guanzon, N. G., Jr., H. Nakahara and Y. Yoshida. 1994. Inhibitory effects of heavy metals on growth and photosynthesis of three freshwater microalgae. Fisheries Science. 60: 379-384.Gupta, A. and G. S. Singhal. 1996. Effect of heavy metals on phycobiliproteins of Anacystis nidulans. Photosynthetica. 32: 545-548.Güven, K. C., S. Topcuoĝlu, D. Kut, N. Esen, N. Erentürk, N. Saygı, E. Cevher, B. Güvener and B. Öztürk. 1992. Metal uptake by Black Sea algae. Botanica Marina. 35: 337-340.Ho, Y. B. 1990a. Metals in Ulva lactuca in Hong Kong intertidal waters. Bulletin of Marine Science. 47: 79-85.Ho, Y. B. 1990b. Ulva lactuca as bioindicator of metal contamination in intertidal waters in Hong Kong. Hydrobiologia. 203: 73-81.Jackson, P. J., P. J. Unkefer, E. Delhaize and N. J. Robinson. 1990. Mechanisms of trace metal tolerance in plant. In “Environmental Injury to Plants” (F. Katterman, ed.), Chapter 10, pp. 231-255. Academic Press, Inc. San Diego, California 92101. ISBN 0-12-401350-3.Juma, N. G. and M. A. Tabatabai. 1988. Phosphatase activity in corn and soybean roots: conditions for assay and effects of metals. Plant and Soil. 107: 39-47.Knauer, K., R. Behra and L. Sigg. 1997. Adsorption and uptake of copper by the green alga Scenedesmus subspicatus (Chlorophyta). Journal of Phycology. 33: 596-601.Lanzetta, P. A., J. A. Lawrence, P. S. Reinach and O. A. Candia. 1979. An improved assay for nanomole amounts of inorganic phosphate. Analytical Biochemistry. 100: 95-97.Lee, R. E. 1989. Chlorophyta. pp. 224-228. In Phycology. Cambridge University Press, New York.Lidon, F. C., and F. S. Henriques. 1991. Limiting step on photosynthesis of rice plants treated with varying copper levels. Journal of Plant Physiology. 138: 115-118.Lidon, F. C., J. C. Ramalho and F. S. Henriques. 1993. Copper inhibition of rice photosynthesis. Journal of Plant Physiology. 142: 12-17.Lidon, F. C. and F. S. Henriques. 1994. Subcellular localisation of copper and partial isolation of copper protein in roots from rice plants exposed to excess copper. Australian Journal of Plant Physiology. 21: 427-436.Lidon, F. C. and F. S.Henriques. 1998. Role of rice shoot vacuoles in copper toxicity regulation. Environmental and Experimental Botany. 39: 197-202.Lobban, C. S. and P. J. Harrison, 1994. eds: Seaweed Ecology and Physiology. Cambridge University Press, New York.Lolkema, P. C., M. H. Donker, A. J. Schouten and W. H. O. Ernst. 1984. The possible role of metallothioneins in copper tolerance of Silene cucubalus. Planta. 162: 174-179.Malea, P., S. Haritonidis and I. Stratis. 1994. Bioaccumulation of metals by Rhodophyta species at Antikyra Gulf (Greece) near an aluminium factory. Botanica Marina. 37: 505-513.Malea, P., S. Haritonidis and T. Kevrekidis. 1995. Metal content of some green and brown seaweeds from Antikyra Gulf (Greece). Hydrobiologia. 310: 19-31.Mimura, T. 1995. Homeostasis and transport of inorganic phosphate in plants. Plant Cell Physiology. 36: 1-7.Murphy, J. and J. P. Riley. 1962. A modified single solution method for the determination of phosphorus in natural waters. Analytica Chemical Acta. 27: 31-36.Neumann, D., U. zur Nieden, O. Lichtenberger and I. Leopold. 1995. How does Armeria maritima tolerate high heavy metal concentrations? Journal of Plant Physiology. 146: 704-717.Ouzounidou, G. 1994. Copper-induced changes on growth, metal content and photosynthetic function of Alyssum montanum L. plants. Environmental and Experimental Botany. 34: 165-172.Pérez-Lloréns, J. L. and F. X. Niell. 1995. Short-term phosphate uptake kinetics in Zostera noltii Hornem: a comparison between excised leaves and sediment-rooted plants. Hydrobiologia. 297: 17-27.Provasoli, L. 1963. Growing marine seaweeds. Proc. 4th Intl. Seaweed Symp. Eds. pp. 9-17. Pergamon Press, New York.Quartacci, M. F., C. Pinzino, C. L. M. Sgherri, F. D. Vecchia and F. Navari-Izzo. 2000.Growth in excess copper induces changes in the lipid composition and fluidity of PSII-enriched membranes in wheat. Physiologia Plantarum. 108: 87-93.Rauser, W. E. 1984. Copper-binding protein and copper tolerance in Agrotis gigantean. Plant Science Letters. 33: 239-247.Rijstenbil, J. W., A. Sandee, J. Van Drie and J. A. Wijnholds. 1994. Interaction of toxic trace metals and mechanisms of detoxification in the planktonic diatoms Ditylum brightwellii and Thalassiosira pseudonana. FEMS Microbiology Reviews. 14: 387-396.Saifullah, S. M. 1978. Inhibitory effects of copper on marine dinoflagellates. Marine Biology. 44: 299-308.Sawidis, T. H. and A. N. Voulgaropoulos. 1986. Seasonal bioaccumulation of iron, cobalt and copper in marine algae from Thermaikos Gulf of the northern Aegean Sea, Greece. Marine Environmental Research. 19: 39-47.Shibata, N., T. Inoue, C. Nagano, N. Nishio, T. Kohzuma, K. Onodera, F. Yoshizaki, Y. Sugimura and Y. Kai. 1999. Novel insight into the copper-ligand geometry in the crystal structure of Ulva pertusa plastocyanin at 1.6-Å resolution. Journal of Biological Chemistry 274: 4225-4230.Smith, S. V., W. J. Kimmerer, E. A. Laws, R. E. Brock and T. W. Walsh. 1981. Kaneohe Bay sewage diversion experiment: perspectives on ecosystem responses to nutrient perturbation. Pacific Science. 35: 279-402.Stallwitz, E. and D.-P. Häder. 1993. Motility and phototactic orientation of the flagellate Eugiena gracilis impaired by heavy metal ions. Journal of Photochemistry and Photobiology. B: Biology. 18: 67-74.Stallwitz, E. and D.-P. Häder. 1994. Effects of heavy metals on motility and gravitactic orientatiom of the flagellate, Eugiena gracilis. European Journal of Protistology. 30: 18-24.Stauber, J. L., and T. M. Florence. 1987. Mechanism of toxicity of ionic copper and copper complexes to algae. Marine Biology. 94: 511-519.Strömgren, T. 1979. The effect of copper on length increase in Ascophyllum nodosum (L.) Le Jolis. Journal of Experimental Marine Biology and Ecology. 37: 153-159.Strömgren, T. 1980. The effect of dissolved copper on the increase in length of four species of intertidal fucoid algae. Marine Environmental Research. 3: 5-13.Takamura, N., F. Kasai and M. M. Watanabe. 1989. Effects of Cu, Cd and Zn on photosynthesis of freshwater benthic algae. Journal of Applied Phycology. 1: 39-52.Thomas, J. C., F. K. Malick, C. Endreszl, E. C. Davies and K. S. Murray. 1998. Distinct responses to copper stress in the halophyte Mesembryanthemum crystallinum. Physiologia Plantarum. 102: 360-368.Van Tichelen, K. K. and J. V. Colpaert. 2000.Kinetics of phosphate absorption by mycorrhizal and non-mycorrhizall Scots pine seedlings. Physiologia Plantarum. 110: 96-103.Vavilin, D. V., V. A. Polynov, D. N. Matorin and P. S. Venediktov. 1995. Sublethal concentrations of copper stimulate photosystem II photoinhibition in Chlorella pyrenoidosa. Journal of Plant Physiology. 146: 609-614.Wahbeh, M. I, D. M. Mahasneh and I. Mahasneh. 1985. Concentrations of zinc, manganese, copper, cadmium, magnesium and iron in ten species of algae and sea water from Aqaba, Jordan. Marine Environmental Research. 16: 95-102.Whitton, B. A., I. G. Burrows and M. G. Kelly. 1989. Use of Cladophora glomerata to monitor heavy metals in rivers. Journal of Applied Phycology. 1: 293-299.Wu, J. T., S. C. Chang and K. S. Chen. 1995. Enhancement of intracellular proline level in cells of Anacystis nidulans (Cyanobacteria) exposed to deleterious concentrations of copper. Journal of Phycology. 31: 376-379.Wu, J. T., S. U. Chang and T. L. Chou. 1995. Intracellular proline accumulation in some algae exposed to copper and cadmium. Botanical bulletin of Academia Sinica. 36: 89-93.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊