跳到主要內容

臺灣博碩士論文加值系統

(44.197.230.180) 您好!臺灣時間:2022/08/20 09:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:游智謙
研究生(外文):Chih-Chian Yu
論文名稱:南海北坡晚第四紀沈積物有機碳碳同位素的變化
論文名稱(外文):Late Quaternary d13C Variation of Sediment Organic Carbonin the Northern South China Sea
指導教授:林慧玲林慧玲引用關係
指導教授(外文):Hui-Ling Lin
學位類別:碩士
校院名稱:國立中山大學
系所名稱:海洋地質及化學研究所
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:83
中文關鍵詞:南海有機碳同位素正有機碳含量
外文關鍵詞:TOC ex wt%δ13CorgSouth China Sea
相關次數:
  • 被引用被引用:7
  • 點閱點閱:317
  • 評分評分:
  • 下載下載:27
  • 收藏至我的研究室書目清單書目收藏:3
中文摘要
本論文研究工作主要利用南海重力式岩心17950-2, 探討南海北坡沈積
物中有機碳碳同位素之變化,並進一步與其他參數,如有孔蟲碳氧穩定同
位素、有機碳含量、碳酸鈣百分比進行比對,以描繪晚第四紀南海北部古
海洋變遷。在20 萬年∼6 萬5 千年前,沈積物有機碳碳同位素(δ13Corg)、
有機碳含量與陸源無機物百分比變化趨勢類似:有機碳與陸源無機物含量
增加時,δ13Corg 隨之變重,可能因陸源物質輸入增加,表水生產力提高,
使δ13Corg 因偏海相而加重。冰期時生產力提高之原因,除陸源有機物輸入
增加、大氣循環增強所致之混合層加深、風驅湧升流增強等因素外,因南
海的水文是以氮為生產力限制因子的海盆,冰期時落塵量增高所強化之固
氮作用有可能也是提高生產力的原因之一。
沈積物有機碳碳同位素一般應用於陸棚區海源與陸源有機碳比例探
討,或遠離陸源輸入之低生產力地區海水pCO2 之重建。但在釐清保存效應
校正以後的沈積物有機碳含量與碳同位素組成比較討論後,南海北坡之有
機碳碳同位素紀錄其實明顯地受到冰期時海水表面生產力提高所影響,因
此南海有機碳碳同位素紀錄不適於重建pCO2。
Abstract
The primary objective of this study was to determine the isotopic variation
of the sedimentary organic carbon (δ13Corg) in the sediment samples of the
gravity core 17950-2. The core was retrieved from the northern South China
Sea during “Monitoring Monsoon” cruise onboard R/V Sonne in 1994. The
δ13Corg data were further compared with other proxies, such as foraminiferal
δ18O and δ13C, TOC wt%, and CaCO3 wt% to decipher the late Quaternary
evolution of climate change from the South China Sea for the last 200 ky. Prior
to 65 ka, the δ13Corg, calibrated TOC wt% (TOC ex wt%), and Terrestrial wt%
fluctuated synchronously. The increased TOC ex wt% and Terrestrial wt% were
consistent with the enriched δ13Corg, implying the enhanced productivity due to
the increased terrestrial input. The enhanced glacial productivity could have
been caused by the increase in terrestrial input and mixed layer by wind-driven
upwelling. The South China Sea, however, is a nitrogen-limited basin. The
enhanced nitrogen fixation induced by increased dust input can also be a
potential candidate that is responsible for the elevated productivity during
glacials.
Theoretically, the δ13Corg is utilized as a powerful tool to determine the
carbon ratio between marine and terrestrial origin in the shelf area and
reconstruct the pCO2 history of the low-productivity open ocean. According to
TOC ex wt%, the productivity of the northern South China Sea were
significantly higher in glacials than interglacials. Therefore, the variation of
pCO2 of the northern South China Sea can not be reconstructed properly based
on δ13Corg record solely .
目錄
致謝……………………………………………………………………………Ⅰ
中文摘要………………………………………………………………………Ⅱ
英文摘要………………………………………………………………………Ⅲ
目錄……………………………………………………………………………Ⅳ
圖目錄…………………………………………………………………………Ⅵ
表目錄…………………………………………………………………………Ⅷ
附錄目錄………………………………………………………………………Ⅸ
壹、緒論………………………………………………………………………. 1
1.1 前言…………………………………………………………………… 1
1.2 研究區域………………….……………….………………….………. 2
1.3 前人研究….…………….…………….…………….…………….…... 9
貳、研究材料與方法….…………….…………….…………….…………… 12
2.1 研究材料….…………….…………….…………….…………….…... 12
2.2 研究方法….…………….…………….…………….…………….…... 12
2.2.1 粗顆粒含量(Coarse fraction, >63 µm)分析….………………. 12
2.2.2 顆粒度分析方法….…………….…………….…………….……. 13
2.2.3 有孔蟲之碳、氧同位素……….…………….…………….…….. 13
2.2.4 沈積物中有機碳穩定碳同位素分析….…………….…………... 14
參、實驗結果….……………….……………….……………….…………… 20
3.1 年代模式………….……………….……………….……………….… 20
3.2 粗顆粒含量….……………….……………….……………….………. 24
3.3 平均粒徑….……………….……………….……………….………… 24
3.4 浮游性有孔蟲之碳、氧同位素……….……………….…………….. 27
3.4.1 氧同位素……….……………….……………….……………….. 27
3.4.2 碳同位素……….……………….……………….……………….. 28
3.5 底棲性有孔蟲之碳、氧同位素……….……………….…………….. 31
3.5.1 氧同位素……….……………….……………….……………….. 31
3.5.2 碳同位素……….……………….……………….……………….. 31
3.6 有機碳穩定碳同位素組成的變化…….……………….…………….. 33
3.7 陸源無機物質百分比的變化….……………….……………….……. 36
3.8 有機碳含量保存效應修正….……………….……………….………. 38
肆、討論….……………….……………….……………….………………… 41
4.1 南海北部的碳酸鈣旋回…….….……………….…………………….. 41
4.2 南海北部古生產力的變化…………………………………….……… 47
4.3 氧同位素與底水性質…………………………….….………………... 57
4.4 南海碳循環演化的初探………….….…………….………………….. 59
伍、結論….……………….……………….……………….………………… 65
參考文獻….……………….……………….…………….………….……….. 66
中文部份….……………….……………….……………….……………... 66
英文部份….……………….……………….……………….……………... 66
圖目錄
圖一、西太平洋邊緣海分布圖……………………………………………. 3
圖二、本論文研究區域之地理位置圖…………………………………… 4
圖三、南海(A)夏季的表面環流(B)冬季的表面環流……………………. 7
圖四、南海(A)夏季的表層水溫(B)冬季的表層水溫…………………….. 8
圖五、碳酸鈣重量計算所得二氧化碳體積與壓力讀值關係……………. 18
圖六、岩心17950-2 (A)有孔蟲C. wuellerstorfi氧同位素對深度的變化... 22
(B)有孔蟲C. wuellerstorfi氧同位素對SPECMAP年
代的關係………………………………………... 22
圖七、岩心17950-2沈積速率對時間的變化……………………………… 23
圖八、岩心17950-2 (A)粗顆粒含量隨時間的變化………………………. 25
(B)碳酸鈣含量隨時間的變化………………………. 25
圖九、岩心17950-2平均粒徑隨時間的變化……………………………… 26
圖十、岩心17950-2有孔蟲G. sacculifer碳、氧同位素隨時間的變化….. 30
圖十一、岩心17950-2有孔蟲C. wuellerstorfi碳、氧同位素隨時間的變
化…………………………………………………………………. 32
圖十二、岩心17950-2有機碳穩定碳同位素(δ13Corg)隨時間的變化…….. 35
圖十三、岩心17950-2陸源無機物含量百分比隨時間的變化…………… 37
圖十四、南海岩心17950-2校正前、後之有機碳含量隨時間的變化…... 40
圖十五、西太平洋邊緣海各種碳酸鹽旋回的碳酸鈣含量變化圖……….. 44
圖十六、岩心17950-2之(A)碳酸鈣含量隨時間的變化…………………. 45
(B)粗顆粒含量隨時間的變化…………………. 45
(C)“粗顆粒含量╱碳酸鈣含量”比值隨時間
的變化………………………………………….. 45
圖十七、岩心17925-3之(A)浮游性有孔蟲G. ruber δ18O隨深度之變化... 46
(B)碳酸鈣含量隨深度的變化…………………. 46
(C)粗顆粒含量隨深度的變化…………………. 46
(D)“粗顆粒含量╱碳酸鈣含量”比值隨深度
的變化……………………………………….. 46
圖十八、岩心17950-2之(A)TOC ex wt%隨時間的變化………………… 52
(B)δ13Corg隨時間的變化………………………. 52
(C)Terrigenous wt%隨時間的變化……………. 52
圖十九、岩心17950-2之(A) δ13Corg與TOC ex wt%之關係圖…………... 53
(B)δ13Corg與TOC MAR之關係圖……………... 53
圖二十、岩心17950-2、17954、17925-3 δ13Corg與δ18O (G. ruber)隨深
度的變化………………………………………………………..... 54
圖二十一、南海全新世(A)與末次冰期(B)時之平均質量累積速率…….. 55
圖二十二、(A)岩心17950-2與17954 δ13Corg與δ18O(C. wuellerstorfi)之關
係圖…………………………………………………………….. 58
圖二十三、南海各岩心表層沈積物中底棲性有孔蟲C. wuellerstorfi的穩
定同位素值與現代海水之碳同位素對深度之關係圖……... 59
圖二十四、岩心17950-2浮游性有孔蟲G. sacculifer與G. ruber之穩定
碳、氧同位素隨時間之變化………………………….……... 63
圖二十五、(A)岩心17950-2碳酸根離子濃度隨時間的變化…………… 64
(B)岩心17950-2“粗顆粒含量╱碳酸鈣”比值隨時間的變
化……………………………………………………………... 64
(C)南極Vostok冰芯紀錄之大氣CO2隨時間的變化(Petit et
al., 1999)……………………………………………………... 64
表目錄
表一、碳酸鈣重量、理論二氧化碳體積與壓力對應關係………………….. 18
表二、台灣東部花蓮縣長虹橋附近沈積物δ13Corg分析結果………………… 19
表三、岩心17950-2定年點的岩心深度及定年結果………………………… 20
附錄目錄
附錄一、附錄一、岩心17950-2 浮游性有孔蟲G. sacculifer 穩定同位素與
平均粒徑……………………………………………….……………77
附錄二、岩心17950-2 有機碳同位素值及氧同位素地層定年點……………81
參考文獻中文部份︰丁信中,1997,南海十五萬年來表水古生產力之變化,國立中山大學海洋地質及化學研究所碩士論文,共100 頁。余文良,1997,沈積物有機碳同位素組成之研究:南海東北部表水古生產力之變化。國立中山大學海洋地質及化學研究所碩士論文,共81 頁。周文臣,1994,台灣東緣外海及日本海沈積物碳、氧同位素之地球化學研究。國立中山大學海洋地質研究所碩士論文,共117 頁。孫湘平,1995,中國的海洋,商務印書館,共209 頁。陳明助,1992,台灣東北海域沈積物有機碳同位素及有機地球化學研究。國立中山大學海洋地質研究所碩士論文,共83 頁。英文部份Archer, D and E. Maierreimer, Effect of deep-sea sedimentary calcite preservation onatmospheric CO2 concentration, Nature , 367, 260-263, 1994.Arrhenius, G., Sediment core from the East Pacific, Swedish deep Sea Espedition Rep,No. 5, Gotenbog, 1-227, 1952.Barnola, J. M., D. Raynaud, Y. S. Korotkevich, and C. Lorius, Vostok ice coreprovides 160,000-year record of atmospheric CO2, Nature, 329, 408-414, 1987.Berger, W. H., Deep-sea carbonate and the deglaciation preservation spike in thepteropods and foraminifera, Nature, 269, 301-304, 1977.Berger, W. H., Pacific carbonate cycles revisited: Arguments for and againstproductivity control. In: K. Ishizaki and T. Saito (eds), Centenary of JanpaneseMicro-paleontology, Terra, Tokyo, 15-25, 1992.Bond, G., W. Broecker, S. Johnsen,J. Mcmanus,L. Labeyrie, J. Jouzel, and G. Bonani,Correlation between climate records from North Atlantic sediments andGreenland ice, Nature, 365, 143-147, 1993.Broecker, W. S., Glacial to Interglacial changes in ocean chemistry, Progress inOceanography, 11,151-197, 1982.Broecker, W. S., The great ocean conveyor, Oceanography, 4, 79-89, 1991.Broecker, W. S., The Gracial World According to Wally, Lamont - Doherty EarthObservatory of Columbia University, 318 pp, 1995.Broecker, W. S. and E. Clark, CaCO3 Size Distribution - A paleocarbonate ion proxy,Paleoceanography, 14, 5, 596-604, 1999.Broecker, W. S. and Henderson, G. M., The sequence of events surroundingTermination Ⅱ and their implication''s for the causes of glacial-inter-glacial CO2changes, Paleoceanography, 13, 352-364, 1998.Broecker, W. S. and T. H. Peng, 1982, Tracer in the Sea, Eldigio Press, Palisades, NewYork, pp. 690, 1982.Broecker, W. S. and T. H. Peng, the role of CaCO3 compensation in glacial tointerglacial atmospheric CO2 change, Global Biogeochemical Cycle, 1, 15-29,1987.Broecker, W. S., W. C. Patzert, J. R. Toggweiler, and M. Stuiver, Hydrography,chemistry, and radioisotopes in the Southwest Asian Basins, Journal ofGeophysical Research, 91(C12), 14345-14354, 1986.Broecker, W. S., The great ocean conveyor, Oceanography, 4, 79-89, 1991.Capone, D. G., J. P. Zehr, H. W. Paerl, B. Bergman, and E. J. Carpenter,Trichodesmium, a globally significant marine cyanobacterium, Science, 276,1221-1229, 1997.Chao, S.-Y., P.-T. Shaw, and S. Y. Wu, Deep water ventilation in the South China Sea,Deep Sea Research , 43(4), Part Ⅰ, 445-466, 1996.Charles, C. D., P. N. Froelich, M. A. Zibello, R. A. Morlock, and J. J. Morly, Biogenicopal in the Southern Ocean sediments over the last 450,000 years: Implication ofsurface water chemistry and circulation, Paleoceanography, 6, 697-728, 1991.Chen, A. C.-T., S.-L. Wang, B.-J. Wang, and S.-C. Pai, Nutrient budgets for the SouthChina Sea basin, Marine Chemistry, 75, 281-300, 2001.Chen, M.-T., C.-Y. Huang, and K.-Y. Wei, 25,000-year late Quaternary records ofcarbonate preservation in the South China Sea. Palaeogeography,Palaeoclimatoloy, Palaeoecology, 129, 155—169, 1997.Craig, H., Geochemistry of the stable isotopes, Geochimica et Cosmochimica Acta, 3,53-92, 1953.Crowley, T. J., Ice-Age Terrestrial Carbon Changes Revisited, Global BiogeochemicalCycles, 9, 377-389, 1995.Curry, W. B. and T. J. Crowley, the δ13C of equatorial Atlantic surface waters:Implications for ice age pCO2 levels, Paleoceanography, 2, 489-517, 1987.Dansgaard, W., S. J. Johnsen, and J. W. C. White, The abrupt termination of theYounger Dryas climate event, Nature, 339, 532-534, 1989.Degens, E. T. and K. Mopper, Factors controlling the distribution and early diagenesisof organic material in marine environments, In: Reily and Chester (eds.),Chemical Oceanography, 6, Academic Press, New York, pp. 60-186, 1976.Deuser, W. G., Seasonal-variations in isotopic composition and deep-water fluxes ofthe tests of perennially abundant planktonic-foraminifera of the Sargasso Sea -Results from sediment-trap collections and their paleoceanographic significanceJournal Of Foraminiferal Research, 17, 14-27, 1987.Deuser, W. G. and E. H. Ross, Seasonally abundant planktonic-foraminifera of theSargasso Sea - succession, deep-water fluxes, isotopic compositions, andpaleoceanographic implications, Journal Of Foraminiferal Research, 19, 268-293,1989.Duce, R. A. and N. W. Tindale, Atmospheric transport of iron and its deposition in the ocean, Limnology and Oceanography, 36, 1715-1726, 1991.Duplessy, J. C., N. J. Shackleton, R. G. Fairbanks, L. Labeyrie, D. Oppo, and N.Kallel, Deepwater source variations during the last climate cycle and their impacton the global deepwater circulation, Paleoceanography, 3, 343-360, 1988.Emerson, S. and J. I. Hedges, Processes controlling the organic carbon content of openocean sediments, Paleoceanography, 3, 621-634, 1988.Eppley, R. W., and B. J. Peterson, Particulate organic matter flux and planktonic newproduction in the deep ocean, Nature, 282, 677-680, 1979.Fairbanks, B. G., A 17,000-year glacio-eustatic sea level record: Influence of glacialmelting rates on the Younger Dryas event and deep-ocean circulation, Nature,342, 637-642, 1989.Fairbanks, R. G, A. W. H.Be, R. Free, M. Sverdlove, and P. H. Wiebe,Vertical-distribution and isotopic fractionation of living planktonic-foraminiferafrom the Panama Basin, Nature, 298, 841-844, 1982.Fang, G. H., W. D. Fang, Y. Fang, and K. Wang, A survey of the study of the SouthChina Sea upper ocean circulation, Acta Oceanographica Taiwanica, 37, 1-16,1998.Fontugne, M. R., and J. C. Duplessy, Variations of the monsoon regime during theupper Quaternary: Evidence from carbon isotopic record of organic matter inNorth Indian Ocean sediment cores, Paleogeography, Palaeoclimatology,Paleoecology, 56, 69-88, 1986.Gong, G. C., K. K. Liu, and S. C. Pai, The chemical hydrography of the South ChinaSea west of Luzon and a comparison with the west Philippine Sea, Terrestrial,Atmospheric and Oceanic Sciences, 3, 587-602, 1992.Grothmann, A., Rezente verbreitungsmuster vulkanischer, terrigener und biogenerkomponenten und stabiler kohlenstoff- und Sauerstoff-Isotope in Sedimenten derSu¨dchina-See, M.Sc. Thesis, Kiel University. 1996.Haug, G. H., M. A. Maslin, M. Sarnthein, R. Stax, and R. Tiedmann, Evolution ofnorthwest Pacific sedimentation pat-terns since 6 Ma (Site 882). Proc. ODP, InitialReports, 145, 85—119, 1995.Holmes, M. E., R. R. Schneider, P. J. Muller, M. Segl, and G. Wefer, Reconstructionof past nutrient utilization in the eastern Angola Basin based on sedimentaryδ15N/δ14N ratios, Paleoceanography, 12, 604-614, 1997.Huang, C.-Y., P.-M. Liew, M.-X. Zhao, T.-C. Chang, C.-M. Kuo, M.-T. Chen, C.-H.Wang, and L.-F. Zheng, Deep-sea and lake records of the southeast- Asianpaleomonsoons for the last 25,000 years, Earth and Planetary Science Letters,146, 59-72, 1997.Huang, C.,Y., S. F. Wu, M. Zhao, M.-T. Chen, C. H. Wang, X. Tu, and P. B. Yuan,Surface ocean and monsoon climate variability in the South China Sea since thelast deglaciation, Marine Micropaleontology, 32. 71-94, 1997.Hunt, J. M., The significance of carbon isotope variations in marine sediments, In: G.D. Hubson and G. B. Speers (eds.), Advances in Organic Geochemistry, pp.27-35, 1970.Jansen, J. H. F., and S. J. Van der Gaast, Accumulation and dissolution of opal inQuaternary sediments of the Zaire deep-sea fan (northeastern Angola Basin),Marine Geology, 83, 1-7, 1988.Jian, Z.-M., L.-J. Wang, M. Kienast, M. Sarnthein, W. Kuhnt, H.-L. Lin, and P.-X.Wang, Benthic foraminiferal Paleoceanography of the South China Sea over thelast 40,000 years, Marine Geology, 156, 159-186, 1999.Jian, Z., B. Huang, W. Kuhnt, and H.-L. Lin, Late Quaternary upwelling intensity andEast-Asian Monsoon forcing in the South China Sea, Quaternary Research,55 ,363-370, 2001.Keigwin, L. D., G. A. Jones, and P. N. Froelich, A 15,000 year paleoenvironmentalrecord from Meiji Seamount, far north-western Pacific, Earth and PlanetaryScience Letter, 111, 425—440, 1992.Kennett, J. P., Marine Geology. Prentice-Hall, London, 1-813, 1982.Kienast, M., Unchanged nitrogen isotopic composition of organic matter in the SouthChina Sea during the last climatic cycle: Global implications, Paleoceanography,15, 244—253, 2000.Kienast, M., S. Steinke, K. Stattegger, and S. E. Calvert, Synchronous tropical SouthChina Sea SST change and Greenland warming during deglaciation, Science, 291,2132-2134, 2001a.Kienast, M, S. E. Calvert, C. Pelejero, and J. O. Grimalt, A critical-review of marinesedimentary δ13Corg-pCO2 estimates - new palaeorecords from the South ChinaSea and a revisit of other low-latitude δ13Corg-pCO2 records, GlobalBiogeochemical Cycles, 15, 113-127, 2001b.Kuhnt, W., S. Hess, and Z.-M. Jian, Quantitative composition of benthic foraminiferalassemblages as a proxy indicator for organic-Carbon flux rates in the South ChinaSea, Marine Geology, 156, 123-157, 1999.La Violette, P. E. and T. R. Frontenac, Temperature, salinity, density of the world''sseas: South China Sea and adjacent gulfs, No. 67-5, U. S. Naval Oceanogr. Off.,Washington, D. C., 1967.Lau, K. M., Y. H. Ding, J. T. Wang, R. Johnson, T. Keenan, R. Cifelli, J. Gerlach, O.Thiele, T. Rickenbach, S. C. Tsay, and P. H. Lin, A report of the field operationsand early results of the South-China-Sea Monsoon Experiment (SCSMEX),Bulletin of the American Meteorological Society, 81, 6, 1261-1270, 2000.Lin, H.-L., C.-T. Lai, H.-C. Ting, L.-J. Wang, M. Sarnthein, and J.-J. Hung, LatePleistocene nutrients and sea-surface productivity in the South China Sea - Arecord of teleconnections with northern-hemisphere events, Marine Geology, 156,197-210, 1999a.Lin, H.-L., L.-W. Wang, C. H. Wang, and G. C. Gong, Vertical-distribution of δ13Cof dissolved inorganic carbon in the northeastern South China Sea, Deep-SeaResearch Part I-Oceanographic Research Papers, 46, 757-775, 1999b.Liss, P. S. and L. Merlivat, Air-sea exchange rate: Introduction and Synthesis. In:Baut-Menarrd, P. (ed), The Role of Air-Sea Exchange in Geochemical Cycling,D. Reidel, Hingham, Mass., 113-127, 1985.Martin, J. H., Iron hypothesis of CO2 change, Paleoceanography, 1, 1-13, 1990.Martinson, D. G., G. P. Nicklas, J. D. Hays, J. Imbrie, T. C. Jr. Moore, and N. J.Shackleton, Age dating and the orbital theory of the ice ages: Development of ahigh-resolution 0 to 300,000-year chronostratigraphy, Quaternary Research, 27,1-29, 1987.Matsumoto, K. and J. Lynch-Stieglitz, Similar glacial and Holocene deep-watercirculation inferred from southeast pacific benthic foraminiferal carbon-isotopecomposition, Paleoceanography,14, 149-163, 1999.Meyers, P. A., Organic geochemical proxies of paleoceanographic, paleolimnologic,and paleoclimatic processes, Organic Geochemistry, 77, 213-250, 1997.Miao, Q. M., R. C. Thunell, and D. M. Anderson, Glacial-Holocene carbonatedissolution and sea-surface temperatures in the South China and Sulu Seas,Paleoceanography, 9, 269-290, 1994.Middelburg, J. J., A simple rate model for organic matter decomposition in marinesediments, Geochimica et Cosmochimica Acta, 53, 1577-1581, 1989.Mix, A. C., Pleistocene productivity: Evidence from organic carbon and foraminiferalspecies. In: Productivity of the Ocean: Present and Past, W. H. Berger, Smetacek,and G. Wefer (eds.), 313-340, 1989.Olausson, E., Quaternary correlations and the geochemistry of oozes, In: Funnel, B.M.Ed. , The Micropaleontology of Oceans. Cambridge Univ. Press, 375—398, 1971.Petit, J. R., J. Jouzel, D. Raynaud, N. I. Barkov, J. M. Barnola, I. Basile, M. Bender, J.Chappellaz, M. Davis, G. Delaygue, M. Delmotte, V. M. Kotlyakov, M.Legrand, V. Y. Lipenkov, C. Lorius, L. Pepin, C. Ritz, E. Saltzman, and M.Stievenard, Climate and atmospheric history of the past 420,000 years from theVostok Ice Core, Antarctica, Nature, 399, 429-436, 1999.Pflaumann, U. and Z.-M. Jian, Modern distribution patterns of planktonic-foraminiferain the South China Sea and western Pacific - A new transfer technique to estimateregional sea-surface temperatures, Marine Geology, 156, 41-83, 1999.Pokras, E. M., Diatom record of Late Quaternary climatic change in the easternequatorial Atlantic and tropical Africa, Paleoceanography, 2, 273-286, 1987.Porter, S. C. and Z. An, Correlation between climate events in the North Atlantic andChina during the last glaciation, Nature, 375, 305-308, 1995.Prell, W. L. and J. E. Kutcbach, Monsoon variation over the past 150,000 years,Journal of Geophysical Research-Atmosphere, 92, 8411-8425, 1987.Rau, G. H., P. N. Froelich, T. Takahashi, and D. J. Des Marias, Does sedimentaryorganic δ13C record variations in Quaternary ocean [CO2(aq)]?, Paleoceanography,6, 335-347, 1991.Ravelo, A. C. and R. G. Fairbanks, Oxygen isotopic composition of multiple species ofplanktonic foraminifera: Records of the modern photic zone temperature gradient,Paleoceanography, 7, 815-831, 1992.Riley, J. P., Analytical chemistry of sea water, Chemical Oceanography, 3, 2nd ed.,Riley and Skirrow eds., Academic Press, New York, 193-514, 1975.Sackett, W. M., The depositional history and isotopic organic carbon composition ofmarine sediments, Journal of Marine Geology, 2,173-185, 1964.Sanyal, A, N. G. Hemming, G. N. Hanson, W. S. Broecker, Evidence for a higher pHin the glacial ocean from boron isotopes in foraminifera, Nature, 373, 234-236,1995.Sanyal, A, N. G. Hemming, W. S. Broecker, and G. N. Hanson, Changes in pH in theEastern Equatorial Pacific Across Stage 5-6 Boundary based on boron isotopes inforaminifera, Global Biogeochemical Cycles, 11, 125-133, 1997.Sarnthein, M. and Pinxian Wang, Response of West Pacific marginal seas to globalclimatic change, Marine Geology, 156, 1—3, 1999.Sarnthein, M., K. Winn, J.-C. Duplessy, and M. R. Fontugne, Global variations ofsurface productivity in low and mid latitudes: influence on CO2 reservoirs of thedeep ocean and atmosphere during the last 21,000 years, Paleoceanography, 3,361-399, 1988.Shaw, P.-T., The intrusion of water masses into the sea southwest of Taiwan, Journalof Geophysical Research, 94(C12), 18213-18226, 1989.Shaw, P.-T., The seasonal variation of the intrusion of the Philippine Sea water into theSouth China Sea, Journal of Geophysical Research, 96(C1), 821-827, 1991.Shaw, P.-T. and Chao, S.-Y., surface circulation in the South China Sea, Deep SeaResearch, 41, Part Ⅰ, 1663-1683, 1994.Spero, H. J., Do Planktic foraminifera accurately record shifts in the carbon isotopiccomposition of seawater ΣCO2? Marine Micropaleontology, 19, 4, 275-285, 1992.Spero, H. J., J. Bijma, and D. W. Lea, Effect of the seawater carbonate concentrationon foraminiferal carbon and oxygen isotopes, Nature, 390, 497-500, 1997.Spero, H. J., J. Bijma, D. W. Lea, and A. D. Russell, Deconvolving glacial oceancarbonate chemistry from the planktonic foraminifera carbon isotope record, inReconstructing Ocean History: A Window into theFuture, eds. F. Abrantes and A.C. Mix, Kluwer Academic / Plenum Publishers, New York, 329-342, 1999.Steinke, S, M. Kienast, U. Pflaumann, M. Weinelt, and K. Stattegger, Ahigh-resolution sea-surface temperature record from the tropical South China Sea(16,500-3000 Yr Bp), Quaternary Research, 55, 352-362, 2001.Stocker, T. F., The seesaw effect, Science, 282, 61-62, 1998.Suess, E., Particulate organic carbon flux in the ocean-surface productivity and oxygenutilization, Nature, 288,260-263, 1980.Thunell, R. C., and W. B. Curry, and S. Honjo, Seasonal-variation in the flux ofplanktonic-foraminifera - time-series sediment trap results from the PanamaBasin, Earth And Planetary Science Letters, 64, 1, 44-55, 1983.Thunell, R. C., Q. Miao, S. E. Calvert, and T. F. Petersen, Glacial-Holocene biogenicsedimentation pattern in the South China Sea: Productivity variations and surfacewater pCO2, Paleoceanography, 7, 143-162, 1992.Wakeham, S. G., C. Schaffner and W. Giger, Polycyclic aromatic hydrocarbon inrecent lake sediments compounds derived from biogenic precursors during earlydiagenesis, Geochimica et Cosmochimica Acta, 44, 415-429, 1980.Wang, L., Z. Jian, and J. Chen, Late Quaternary pteropods in the South China Sea:carbonate preservation and paleoenvironmental variation. MarineMicropaleontology, 32, 115—126, 1997.Wang, L.-J., M. Sarnthein, H. Erlenkeuser, J. Grimalt, P. Grootes, S. Heilig, E.Ivanova, M. Kienast, C. Pelejero, and U. Pflaumann, East-Asian Monsoon climateduring the late Pleistocene - High-resolution sediment records from the SouthChina Sea, Marine Geology, 156, 245-284, 1999a.Wang, L.-J., M. Sarnthein, H. Erlenkeuser, P. M. Grootes, J. O. Grimalt, C. Pelejero,and G. Linck, Holocene variations in Asian Monsoon Moisture - A bidecadalsediment record from the South China Sea, Geophysical Research Letters, 26, 18,2889-2892, 1999b.Wang, L.-J., M. Sarnthein, P. M. Grootes, and H. Erlenkeuser, Millennial reoccurrenceof century-scale abrupt events of East-Asian Monsoon - A possible heat conveyorfor the global deglaciation, Paleoceanography, 14, 725-731, 1999c.Wang, P.-X., L.-J. Wang, Y. H. Bian, and Z.-M. Jian, Late QuaternaryPaleoceanography of the South China Sea - Surface circulation and carbonatecycles, Marine Geology, 127, 145-165, 1995.Wang, P.-X., Response of Western Pacific marginal seas to glacial cycles:paleoceanographic and sedimentological features, Marine Geology, 156, 5-39,1999.Wei, K.-Y., T.-N. Yang, and C.-Y. Huang, Glacial, Holocene calcareous nannofossilsand Paleoceanography in the northern South China Sea, MarineMicropaleontology, 32, 1, 2, 95, 114, 1997.Wyrtki, K., Scientific results of marine investigations of the South China Sea and theGulf of Thailand, NAGA report, Scripps Inst. Of Oceanogr., La Jolla, Calif., 1969.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊