跳到主要內容

臺灣博碩士論文加值系統

(3.233.217.106) 您好!臺灣時間:2022/08/17 20:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:莊士巧
研究生(外文):Shih-Chiao Chuang
論文名稱:高雄港流場與海水交換之數值模擬研究
論文名稱(外文):Numerical modeling of flow dynamics and water exchange in the Kaohsiung Harbor
指導教授:曾若玄曾若玄引用關係
學位類別:碩士
校院名稱:國立中山大學
系所名稱:海洋資源學系研究所
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:124
中文關鍵詞:混合潮漲退潮河水排放拖曳式ADCPPOM高雄港
外文關鍵詞:towed-ADCPriver runoffmixed tideflood and ebbPOMKaohsiung Harbor
相關次數:
  • 被引用被引用:12
  • 點閱點閱:297
  • 評分評分:
  • 下載下載:43
  • 收藏至我的研究室書目清單書目收藏:1
中文摘要
高雄港是世界上重要的商港之一,往來的船隻進出頻繁,偶爾會有一些意外發生(如撞船、漏油等等),而港灣流場與這些事件往往有密切的關係,故流場的研究及瞭解是具有重要性的。國內對於高雄流況實測資料是非常缺乏,若要在這樣繁忙的港灣裡實施流場長期的觀測是很不容易,因此在不易觀測的情況下,模式是一個非常方便研究流場的工具。
本研究在此區域共做了4次的全面性觀測,分別在90年的1月2日、1月21日、5月26日及6月21日使用EM電磁式海流儀,而在89年10月26日使用拖曳式ADCP來觀測。由這些觀測可初步瞭解高雄港內的潮流並非單純的漲潮向港內,退潮向港外。退潮時,海流主要由二港口流進港內,一港口流出港外;漲潮時,一、二港口的表面流有許多流向港外的海流,除了在中底層的海水是規則地往港內流動。
本文所使用的模式是POM(Princeton Ocean Model)─屬於3-D的數值模式。在M2潮與合成潮比較得知,合成潮所造成的流場比起單獨的M2潮流來的複雜許多,也造成高雄港內流場的多樣化。M2分潮從規則地形到實際地形中,顯示出在外海的海流有著很大的變化,尤其在南邊似梯形的海盆,因此地形在模式中也是佔有很大的影響力。在模式中,最大流速發生在一港口的航道上,可達到 30~40 cm/s以上,二港口可達到 10~20 cm/s。接下來,考慮河流及風的效應;在模式中加入河流淡水的水位高度及鹽度後所得到的結果得知,因淡水密度較低而存在於海水表面形成了表面流,並且淡水從前鎮河流出後,大部份都是往北流,使得港內海水的鹽度北邊平均比南邊低了許多,此時所形成的流場已由一進一出改變為一二港口同出的情形。另外,風對於高雄港的流場影響程度,在模式中已顯示出影響有限,主要還是以潮汐為主。最後,模式在河流與風同時作用下得到,在漲潮時,45號碼頭附近有一個輻散區產生,輻散區兩側的海水均向南北方向流去;退潮時,其輻散區出現在61號碼頭附近。綜合以上的結果可得知,對於影響高雄港流場的主要因子有:一、高雄港是屬於混合潮,流場較複雜;二、地形的影響;三、河水排放的影響。
Abstract
Kaohsiung Harbor is one of the most important international sea ports in the world. Due to the long-standing lack of in-situ current data, the complex variations of the flow field in this basin still remain unclear. As a consequence, the related environmental problems such as oil spills, water quality management and ship maneuvering safety , have long been a great concern in this harbor. The present study is conducted to better understand the flow field in the Kaohsiung Harbor.
A series of synoptic flow observations of the Kaohsiung Harbor were conducted by using towed-ADCP or EM current meters. From these observations it can be shown that the flow field of the Kaohsiung Harbor is:Water entering the harbor through the second entrance and exiting the harbor through the first entrance during ebbs. During floods the flows are reversed.
A 3-D numerical model (from POM) is developed for the Kaohsiung Harbor. The flows are more complicated by the M2 tide driven than by the mixed tide driven. From the results by the M2 tide driven show the ocean current is variable, especially the south ocean current. Therefore, the flows are more complicated owing to the mixed tidal characteristics and shoreline geometry. The maximum current speeds amount to 30 - 40 cm/s in the narrow first entrance and 10 - 20 cm/s in the second entrance. It is clearly demonstrated from the model results that drainage from the Chien-Chen River affects greatly the salinity and circulation patterns of the Kaohsiung Harbor, causing the salinity of the first entrance to be lower than that of the second entrance, and the surface layers flowing outward toward the ocean while the lower layers displaying tidal oscillations. From the modeling results, the influence of the wind on the harbor flows is insignificant and the tide is main force in the harbor. Under the simultaneous forcing of river and wind, flood and ebb tidal streams leaving the two entrances are found to diverge in a flow stagnation area inside the harbor near Pier 45 and 61, respectively. Based on the modeling results, it can be concluded that the main factors affecting the flow patterns of the Kaohsiung Harbor are (1) mixed tidal nature, (2) shoreline geometry and (3) river runoff
目錄
頁次
中文摘要………………………………………………………………………. I
英文摘要…………………………………………………………………….... III
謝誌………………………………………………………………………….... V
目錄………………………………………………………………………….... VI
表目錄………………………………………………………………………... VIII
圖目錄…………………………………………………………………….…... IX
一、前言………………………………………………………………………. 1
1.1國內外學者的研究…………………………………………………... 1
1.2以往高雄港的研究…………………………………………………... 3
二、研究目的…………………………………………………………………. 6
三、現場觀測…………………………………………………………………. 7
3.1儀器介紹……………………………………………………………... 7
3.2實驗設計……………………………………………………………... 8
四、實測結果………………………………………………………………… 10
五、數值模式………………………………………………………………… 12
5.1 POM模式介紹………………………………………………………. 12
5.1.1 基本方程式…………………………………………………….. 12
5.1.2 σ座標之程式轉換…………………………………………….. 14
5.1.3 邊界條件……………………………………………………….. 16
5.2 高雄港數值模式……………………………………………………. 18
六、模擬結果………………………………………………………………… 23
6.1 模式驗證……………………………………………………………. 23
6.2 模式結果……………………………………………………………. 25
6.2.1 潮汐─M2………………………………………………………. 25
6.2.1.1 海底地形一─基本地形(寬)……………………………... 25
6.2.1.2 海底地形二─基本地形(窄)……………………………... 27
6.2.1.3 海底地形三─基本地形+北邊海堤………………………. 28
6.2.1.4 海底地形四─基本地形+南邊海堤………………………. 29
6.2.1.5 海底地形五─基本地形+南、北邊海堤…………………. 29
6.2.1.6 海底地形六─真實地形…………………………………... 29
6.2.2 潮汐─混合潮………………………………………………….. 31
6.2.3 風應力的效應………………………………………………….. 33
6.2.3.1 風應力─北風……………………………………………... 33
6.2.3.2 風應力─南風……………………………………………... 35
6.2.4 河流的效應…………………………………………………….. 36
6.2.5 風與河流的效應……………………………………………….. 40
七、總結……………………………………………………………………… 43
八、參考文獻………………………………………………………………… 47
八、參考文獻
蘇青和, 1998, ’高雄港近岸及港內地區海流特性研究’, 港灣技術研究所87-研(十一)-1.
蘇青和、莊文傑、曾哲茂, 1997, ’高雄港港池水理模式研究’, 港灣技術研究所86-研(十三).
孫佩君(1999):高雄港港池流場的現場調查與數值模擬。國立中山大學海洋資源研究所碩士論文。
許敦睿(1999):曾文溪河口淡水與懸浮沉積物擴散現象及數值模擬研究。國立中山大學海洋地質及化學研究所碩士論文。
Arnoldo, V. L. and K. M. M. Lwiza, 1995:The effects of channels and shoals on exchange between the Chesapeake Bay and the adjacent ocean. Journal of Geophysical Reseach, Vol. 100, No. C9, Pages 18551-18563, September 15, 1994.
Blumberg, A. F., and G. L. Mellor, 1987:A description of a three-dimensional coastal ocean circulation model. In: N. Heaps (Ed.), Three-Dimensional Coastal Ocean Models, Vol. 4, pp. 208, AGU, Washington, D.C.
Brooks D. A., M. W. Baca and Y. T. Lo, 1999:Tidal Circulation and Residence Time in a Macrotidal Estuary:Cobscook Bay, Maine. Estuary, Coastal and Shelf Science, Vol. 49, pp. 647-665, 1999.
Chapman, D. C. 1985: Numerical Treatment of Cross-Shelf Open Boundaries in a Barotropic Coastal Ocean Model., , J. Phys. Oceanogr., Vol. 15, pp. 1060-1075.
Chadwick D. B. and J. L. Largier, 1999:The influence of tidal range on the exchange between San Diego Bay and the ocean. Journal of Geophysical Reseach, Vol. 104, No. C12, Pages 29885-29899, December 15, 1999.
Inoue M. and W. J. Wiseman Jr., 2000:Transport, Mixing and Stirring Processes in a Louisiana Estuary:A Model Studey. Estuarine, Coastal and Shelf Science, Vol. 50, pp. 449-466.
Jan S., S. Y. Chao and J. J. Hung, 2001:Circulation and Brackish Water Dispersal in a Coastal Lagoon of Southwest Taiwan. Journal of Oceanography, Vol. 57, pp. 647-661, 2001.
Jan S., H. H. Hweng, S. Y. Chao, and J. L. Yu, 1999:Note and correspondence dynamics of currents in a Small-scale Coastal Lagoon, Southwestern Taiwan, Vol. 10, No. 4, 885-896, December 1999, TAO.
Lee H. J., S. Y. Chao and K. L. Fan, 1999:Tide-Induced Eddies and Upwelling in a Semi-enclosed Basin: Nan Wan. Estuarine, Coastal and Shelf Science, Vol. 49, pp. 775-787.
Pond S. and G. L. Pickard, 1983:Introductory dynamical oceanography. Butterworth-Heinemann Ltd, Oxford, 2nd editionl.
Van Der Ham, R., H. L. Fontijn, C. Kranenburg and J. C. Winterwerp, 2001:Turbulent exchange of fine sediments in a tidal channel in the Ems/Dollard estuary. Part I: Turbulence measurements. Continental Shelf Research, Vol 21, pp. 1605-1628, 2001.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top