跳到主要內容

臺灣博碩士論文加值系統

(3.235.140.84) 您好!臺灣時間:2022/08/15 03:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:歐淑芳
研究生(外文):Shu-Fang Ou
論文名稱:海洋鑽探計劃504B井位蓆狀岩牆玄武岩中鈦磁鐵礦的特徵與轉變---及其在洋殼磁化作用上之意義
論文名稱(外文):Characteristics and transitions of titanomagnetite in the sheeted-dike basalts from the ODP drilled hole 504B---with implication for the magnetization of oceanic crusts
指導教授:蕭炎宏
指導教授(外文):Yen-Hong Shau
學位類別:碩士
校院名稱:國立中山大學
系所名稱:海洋資源學系研究所
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:151
中文關鍵詞:鈦磁鐵礦海洋鑽探計劃
外文關鍵詞:ODPtitanomagnetite
相關次數:
  • 被引用被引用:0
  • 點閱點閱:215
  • 評分評分:
  • 下載下載:30
  • 收藏至我的研究室書目清單書目收藏:3
中文摘要
海底洋殼磁性異常圖譜記錄地球磁場由過去到現在所發生的反轉,同時也記錄海洋地殼的形成與演化,成為板塊地體構造學說最重要的證據之一。但是對於洋底蓆狀岩牆中主要攜磁礦物的特性與成因一直是被爭論著。本論文針對深海鑽探計畫(DSDP)/海洋鑽探計畫(ODP)504B鑽井,第83、111、137、140和148等五個航次所鑽探之蓆狀岩牆岩心樣品,首度結合岩石磁學方法與高解析岩象學(穿透式電子顯微分析,TEM)與礦物學分析技術來研究磁性礦物。研究結果顯示這些蓆狀岩牆玄武岩均受到不等程度之熱水蝕變作用,次生礦物群反映出綠色片岩相/角閃岩相變質度。整個蓆狀岩牆玄武岩中之原生鈦磁鐵礦,已經受到高溫氧化、偏析作用,以及蝕變作用後轉變成磁鐵礦,成為蓆狀岩牆中主要攜磁礦物。電子顯微鏡觀察之次生磁鐵礦條紋寬度與岩石磁學性質推測之結果吻合,表示蓆狀岩牆磁鐵礦顆粒度是落在於假單磁域的範圍,並隨深度的增加而有增大的趨勢。本研究顯示 TEM觀察結果可以代表蓆狀岩牆玄武岩中磁性礦物之特徵。根據此磁鐵礦的成因模式,可以推論蓆狀岩牆玄武岩約在500℃即可獲得熱化學殘磁(高溫氧化或偏析作用),而在350℃左右再獲得一部份化學殘磁(熱水蝕變),其磁化年代和洋脊玄武岩形成的年代稍微有一個落後的差距。蓆狀岩牆中自然殘磁是噴出岩的一半,乃是因為不具磁性之鈦鐵礦與具磁性之磁鐵礦在鈦磁鐵礦假晶中各佔有約1/2之體積。由於蓆狀岩牆的厚度大約是噴出岩的三倍,其整體的磁化量對海底磁性異常應該有一定的貢獻。
Abstract
The pattern of seafloor magnetic anomalies is a record for the self-reversals of the Earth magnetic field from the long past to the present. It has preserved crucial data for the formation and evolution of oceanic crusts and is one of the most important evidences for the theory of plate tectonics. However, the features and origins of magnetic carriers in the sheeted dikes of oceanic crusts have not been completely understood and are still in debate. In the present study, magnetic minerals in the core samples, which were drilled from the sheeted dikes at the DSDP/ODP 504B drill hole during Legs 83, 111, 137, 140, and 148, have been studied by using methods of rock magnetism and mineralogy with high-resolution petrographic tools (transmission electron microscopy, TEM). Our results indicate that the sheeted dike basalts have been subjected to different degrees of hydrothermal alterations, which are equivalent to greenschist facies to amphibolite facies metamorphism on the basis of the secondary mineral assemblages. The primary titanomagnetite in all the sheeted dike basalts has suffered high-temperature oxidation, exsolution, and hydrothermal alteration, and transformed into magnetite, which becomes the main magnetic mineral in the sheeted dikes. The lamellar widths of the secondary magnetite, as observed with electron microscopy, are consistent with the grain sizes inferred form the rock magnetic properties. The grain sizes of the magnetite are within the pseudo-single-domain field and increase with depths of the sheeted dikes. The consistent results of the whole-rock magnetic properties and the TEM observations have proved that the secondary magnetite and its textural features are representative of the features of magnetic mineral in the sheeted dikes. Therefore, on the basis of the formation model of the magnetite, it is inferred that the sheeted dike basalts obtained thermal chemical remanent magnetization (TCRM) at ~500°C (high-temperature oxidation, or exsolution), and then obtained chemical remanent magnetization (CRM) at ~350°C (hydrothermal alteration). The timing for the magnetization of the sheeted dike basalts thus lags slightly behind their formation. The primary titanomagnetite in the sheeted dikes has been completely transformed into pseudomorphs that consist of approximately half magnetite and half ilmenite or other phases. Thus, the natural remanent magnetization (NRM) of the sheeted dikes is only about half of that for the extrusive pillow basalts. However, the total thickness of the sheeted dikes is about three times of that for the pillow basalts. The sheeted dikes should have contributed to the seafloor magnetic anomalies to some extents.
目錄
中文摘要..………………………………………………………………..I
Abstract..………………………………………………………………….II
致謝..……………………………………………………………………..III
目錄..……………………………………………………………………..IV
表目錄..…………………………………………………………………..VI
圖目錄..…………………………………………………………………..VII
圖版目錄..………………………………………………………………..VIII
附圖目錄..………………………………………………………………..IX
縮寫符號表..……………………………………………………………..X

第一章 緒論1
1-1前言與研究目的……………………………………………………..1
1-2前人研究……………………………………………………………..3
1-3地質背景..……………………………………………………………5
第二章 研究方法8
2-1申請樣品……………………………..………………………..……..9
2-2樣品前處理與實驗分析流程………………………………………..10
2-3光學顯微鏡觀察……………………………………………………..11
2-4掃瞄式電子顯微鏡觀察及分析……………………………………..11
2-5電子微探觀察及分析………………………………………………..13
2-6穿透式電子顯微鏡觀察與分析……………………………………..14
2-7磁學性質之測量……………………………………………………..15
第三章 研究結果-I:岩象觀察與分析21
3-1第83航次(Leg 83)……………………………………….………21
3-2第111航次(Leg 111)……………………………………………..22
3-3第137航次(Leg 137)…………………………………………….23
3-4第140航次(Leg 140)…………………………………………….23
3-5第148航次(Leg 148)…………………………………………….24
3-6岩心樣品受熱水蝕變的分類……………………………………..…25
第四章 研究結果-II:鈦磁鐵礦的組織與特徵………………………..27
4-1光學顯微鏡觀察……………………………………………………..27
4-2掃描式電子顯微鏡、電子微探儀之背反式電子影像與穿透式電子顯微鏡之觀察………………………………………………….……28
4-3蓆狀岩牆玄武岩中鈦磁鐵礦組織的分類…………………….…….34
第五章 研究結果-III:磁學性質36
5-1於中研院地球所測量之磁學性質…………. ……………….………36
5-2於日本岡山理科大學測量之岩石磁學性質………………………..44
第六章 討論51
6-1蓆狀岩牆玄武岩之礦物相與組織51
6-2鈦磁鐵礦氧化、偏析與蝕變作用55
6-3岩石磁學性質……………………………………………….……….60
6-3-1磁學參數測量…………………………………………….………..62
6-3-2 磁滯曲線……………………………………………….………….70
6-3-3 冷、熱磁曲線………………………………………….………….76
第七章 結論…………………………………………………………..…80
參考文獻………………………………………………………………....82
圖版……………………………………………………………………....86
附圖……………………………………………………………………....119
參考文獻
Alt, J. C., Honnorez, C. Laverne, and R. Emmermann., (1986) Hydrothermal alteration of a 1 km section through the upper oceanic crust, Deep Sea Drilling Project Hole 504B: mineralogy, chemistry, and evolution of seawater-basalt interactions, J. Geophys. Res., 91, 10309-10335.
Buddington, A. F., and D. H. Lindsley., (1964) Iron-titanium oxide minerals and synthetic equivalents, J. Petrol., 5, 310-357.
Day, R., Fuller, M., and Schmid, V. A., (1977) Hysteresis properties of titanomagnetites: grain-size and compositional dependence. Phys. Earth Planet. Inter., 13,260-267
Haggerty, S. E. (1976) Oxidation of opaque mineral oxides in basalts. In Rumble, D. III, Ed. OXIDE MINERALS, Review in Mineralogy, 3, Hg1-Hg100.
Hall, J. M., and Muzzatti, A., (1999) Delayed magnetization of the deeper kilometer of oceanic crust at Ocean Drilling Project Site 504, J. Geophys. Res., Vol. 104, No. B6, 12843-12851
Johnson, H. P., and Hall, J. M., (1978) A detailed rock magnetic and opaque mineralogy study of the basalts from the Nazca Plate. Geophys. J. R. astr. Soc. 52, 45-64
Juteau. T., and Maury, R., (1999) The Oceanic Crust, from Accretion to Mantle Recycling, pp. 390., Springer.
Kinoshita, H., Furuta, T., and Kawahata, H., (1985) Magnetic properties and alteration in basalt, Hole 504B, Deep Sea Drilling Project Leg 83, Init. Rep. DSDP, 83, 331-338
Laverne, C. L., Vanko, D. A., Tartarotti, P., and Alt, J. C., (1995) Chemistry and geothermometry of secondary minerals from the deep sheeted dike complex, Hole 504B. Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 137/140, 167-189
Pariso J. E., Stokking, L., and Allerton, S. (1995) Rock magnetic mineralogy of A1- km section of sheeted dikes, Hole 504B. Erzinger, J., Becker, K., Dick, H. J. B., and Stokking, L. B. (Eds.). Proceedings of the Ocean Drilling Program, Scientific Results, Vol.137/140, 253-262
Shau, Y. H., Torii, M.,Horng C. S., Peacor, D. R. (2000) Subsolidus evolution and alteration of titanomagnetite in ocean ridge basalts from Deep Sea Drilling Project/Ocean Drilling Program Hole 504B, Leg83:Implications for the timing of magnetization. Journal of Geophysical Research Vol. 105, No. B10, 23635-23649 October 10
Smith, G. M., and Banerjee, S. K., (1986) Magnetic structure of the upper kilometer of the marine crust at Deep Sea Drilling Project Hole 504B, Eastern Pacific Ocean. Journal of geophysical research, Vol. 91, No.B10, 10337-10354
Vanko, D. A., Laverne, C., Tartarotti, P., and Jeffrey. C. Alt. (1996) Chemistry and origin of secondary minerals from the deep sheeted dikes cord during Leg 148(Hole 504B). Proceeding of the Ocean Drilling Program. Volume 148, 71-86
Xu, W., Voo, R. V. D., Peacor, D. R., Beaubouef, R. T., (1997) Alteration and dissolution of fine-grained magnetite and its effects on magnetization of the ocean floor. Earth and Planetary Science Letters 151, 279-288
Zhou, W. M., Voo, R. V. D, Peacor, D. R., (2001) Low-temperature oxidation in MORB of titanomagnetite to titanomaghemite: A gradual process with implications for marine magnetic anomaly amplitudes. Journal of Geophysical Research Vol. 106, No. B4, 6409-6421, April 10
其他參考資料
Bloemendal, J., and Barton, C. E., (1985) Correlation between rayleigh Loops and Frequency-Dependent and Quadrature Susceptibility: Application to magnetic granulometry of rocks. Journal of geophysical research Vol. 90, No. B10, 8789-8792.
Day, R., Fuller, M., and Schmid, V. A., (1976) Magnetic hysteresis properties of synthetic titanomagnetites. Journal of geophysical research Vol. 81, No. 5.
Droop, G. T. R. (1987) A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Mineralogical Magazine, Vol. 51, 431-435
Dunlop. D. J., and Özdemir. Ö., (1997) Rock Magnetism-Fundamentals and frontiers, 573, CAMBRIDGE.
Facey, D., Housden, J., and O’Reilly, W., (1985) Amagneto-petrological study of rocks from Leg 83, Hole 504B, Deep Sea Drilling Project, Init. Rep. DSDP, 83, 339-346
Hall, J. M., Palmer, H. C., and Hubbard, T. P.,(1971) The magnetic and opaque petrological response of basalts to regional hydrothermal alteration. Geophys. J. R. astr. Soc. 24, 137-174
Hall, J. M., and Fisher, B. E., (1987) The characteristics and significance of secondary magnetite in a profile through the dike component of the Troodos, Cyprus, ophiolite. Can. J. Earth sci. 24, 2141-2159
Johnson, H. P., (1979) Magnetization of the oceanic ceust, Rev.Geophy. 215-226
Johnson, H. P., and Pariso, J. E., (1993) Variations in oceanic crustal magnetization: systematic changes in the last 160 million years. Journal of geophysical research, Vol. 98, No. B1, 435-445.
Johnson, H. P., and Salem, B. L., (1994) Magnetic properties of dikes from the oceanic upper crustal section. Journal of Geophysical Research Vol. 99, No. B11, 21733-21740.
Kamenetsky. V. S., Crawford. A. J., and Meffre. S., (2001) Factors of controlling chemistry of magmatic spinel:an empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks. Journal of Petrology Vol. 42, No. 4, 655-671
Kenneth, Y. C., Verosub. L., and Roberts, A. P., (1994) The effect of low-temperature oxidation on large multi-domain magnetite. Geophysical Research Letters, Vol. 21, No. 9, 757-760.
Kent, D. V., and Gee, J., (1994) Grain size-dependent alteration and the magnetization of oceanic basalts. Science Vol 265,. 1561-1563, 9 September
Lowrie, W., (1990) Identification of ferromagnetic minerals in a rock by corecivity and unblocking temperature properties. Geophysical Research Letters, Vol. 17, No. 2, 159-162.
Opdyke, Neil. D., (1995) Paleomagnetism, polar wandering, and the rejuvenation of crustal mobility. Journal of geophysical research Vol. 100, No. B12, 24361-24366.
Pariso, J. E., and Johnson, H. P., (1991) Alteration processes at Deep Sea Drilling Project/Ocean Drilling Program Hole 504B at thr Costa Rica Rift:Implications for magnetization of oceanic crust. Journal of Geophysical Research Vol. 96, No. B7, 11703-11722.
Pariso, J. E., and Johnson, H. P., (1993) Do lower crustal rocks record reversals of the Earth’s magnetic field? Magnetic petrology of oceanic gabbros from Ocean Drilling Program Hole 735B. Journal of Geophysical Research Vol. 98, No. B9, 16013-16032.
Pariso, J. E., and Johnson, H. P., (1993) Do layer 3 rocks make a significant contribution to Marine Magnetic Anomalies? In situ magnetization of gabbros at Ocean Drilling Program Hole 735B. Journal of Geophysical Research Vol. 98, No. B9, 16033-16052 .
Perkins, A. M., (1996) Observations under electron microscopy of magnetic minerals extracted from speleothems. Earth and Planetary Science Letters 139, 281-289
Price, G. D., (1981) Subsolidus phase relations in the titanomagnetite solid solution series. Ameracan Mineralogist, Vol 66, 751-758.
Shau, Y-H., Peacor, D. R., Essene. E. J. (1993) Formation of magnetic single-domain magnetite in ocean ridge basalts with implications for Sea-Floor magnetizsm. Science Vol 261, 343-345
Smith, G. M. and Banerjee, S. K., (1985) Magnetic properties of basalts from Deep Sea Drilling Project Leg 83: the origin of remanence and its relation to tectonic and chemical evolution, Init. Rep. DSDP, 83, 347-358.
Stokking, L. B., Heise, E. A., Allerton, S., and Worm, H. U. (1996) Data report: magnetic properties and magnetic oxide mineralogy of upper crustal rocks from Holes 504B And 896A. Proc. ODP, Sci. Results, Vol. 148, 467-482
Torii, M., (1995) Rock-magnetic study of sediments: A Brief review of bulk sample methods. In T. Yukutake, ed., The Earth’s Central Part: Its Structure and Dynamics,pp. 57-73. Terra Scientific Publishing Company, Tokyo.
Verosub, K. L., and Roberts, A. P., (1995) Environmental magnetism: Past, present, and future. Journal of Geophysical Research Vol. 100, No. B2, 2175-2192, February 10
Xu, W., Peacor, D. R., Dollase, W. A., Van der Voo, R., Beaubouef , R. (1997) Transformation of titanomagnetite to titanomaghemite: A slow, two-step, oxidation-ordering process in MORB. American Mineralogist, Vol 82, 1101-1110
Zhou, W. M., Van der Voo, R., Peacor, D. R., (1997) Single-domain and superparamagnetic titanomagnetite with variable Ti content in young ocean-floor basalts: No evidence for rapid alteration. Earth and Planetary Science Letters 150, 353-362
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top