跳到主要內容

臺灣博碩士論文加值系統

(3.238.225.8) 您好!臺灣時間:2022/08/09 01:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳和融
研究生(外文):He-Jung Wu
論文名稱:以交錯流動過濾系統分離高雄港及附近海域重金屬物種之研究
論文名稱(外文):Trace Metal Phase Speciations by Using Cross-flow Filtration in the Port of Kaohsiung and nearby Coastal Area
指導教授:王維賢
指導教授(外文):Wei-Hsien Wang
學位類別:碩士
校院名稱:國立中山大學
系所名稱:海洋資源學系研究所
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:85
中文關鍵詞:交錯流動過濾系統
外文關鍵詞:cross-flow filtration
相關次數:
  • 被引用被引用:2
  • 點閱點閱:117
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
摘 要
本論文以高雄港及其附近海域為對象進行研究,利用交錯流動過濾系統來分離海水中的膠態物質,希望能了解高雄港內及附近海域重金屬物種的分佈情形。研究項目包括重金屬存在物種含量及分佈、消化與否對物種含量及分析數據的影響,測站變異對重金屬存在物種的影響。
實驗結果顯示高雄附近海域中的TOC 濃度4.17 mg/L ∼7.17 mg/L。而重金屬濃度以鋅為最高(7.21 μg/L∼14.14 μg/L),其次為錳(3.31 μg/L ∼11.73 μg/L)、銅(0.28 μg/L ∼7.57μg/L)、鉛(2.41 μg/L ∼4.41 μg/L)、鎳(1.78 μg/L ∼2.97 μg/L)。TOC 與各種重金屬的濃度都有離岸愈遠,濃度愈低的趨勢,因此可以推斷TOC 及重金屬的主要的來源應是以陸地為主。
高雄附近海域的重金屬物種分佈主要以測站不同而有所不同,銅:S1以顆粒態為主(67.5 ﹪),S2及S3則以真溶解態為主(S2:56.7 ﹪、S3:89.9 ﹪)。錳:S1以真溶解態為主(56.3 ﹪),S2及S3則是以顆粒態為主(S2:79.8 ﹪、S3:72.1 ﹪)。鎳:各測站皆以真溶解態為主(S1:66 ﹪、S2:79.7 ﹪、S3:84.6 ﹪)。鉛:S1、S3以真溶解態為主(S1:51.7 ﹪、S3:66.0 ﹪),S2則是以顆粒態為主(63.5 ﹪)。鋅:S1以真溶解態為主(56.1 ﹪),S2及S3 則以顆粒態為主(S2:68.1 ﹪、S3:59.6 ﹪),而膠態物質分佈則是離岸愈遠,總量百分比愈低(TOC :1.7 ﹪ ∼8.5 ﹪、Cu :1.3 ﹪∼3.3 ﹪、Mn :0.2 ﹪∼0.6 ﹪、Ni :1.3 ﹪∼24.9 ﹪、Pb :0.4 ﹪∼17.8 ﹪、Zn :0.6 ﹪∼6.6 ﹪)。
膠態物質佔原溶解態的百分比也有隨著離岸距離增加而減少的現象,其中以鎳為最高(27.4 ﹪),其次為鉛(25.6 ﹪)、Cc(10.7 ﹪)、鋅(10.5 ﹪)、銅(10.1 ﹪)、錳(1.1 ﹪),可知除了錳以外,膠態物質在近岸都佔了原溶解態中相當的比例,但是在原溶解態中仍是以真溶解態為主。
在比較不同地區的膠態物種分布係數(Kc)後可發現,高雄附近海域的Kc 值較Galveston Bay 地區為低。
Abstract
Studies of phase speciation of trace metals were conducted in Kaohsiung harbor and coastal areas in April and May 2002. Water samples were collected from three different sampling stations to study the spatial distribution of metal species. Colloidal and truly dissolved subsamples were observed by cross-flow filtration treatment.
The results show that TOC of seawater samples ranged from 4.17 mg/L to 7.17 mg/L. For trace metals, zinc had the highest concentration(7.21 μg/L ∼14.14 μg/L), followed by manganese(3.31 μg/L ∼ 11.73 μg/L), copper(0.28 μg/L ∼ 7.57 μg/L), lead(2.41 μg/L ∼ 4.41 μg/L), nickel(1.78 μg/L ∼ 2.97 μg/L). Highest concentrations of TOC and metals were observed in Kaohsiung harbor(S1), and the values decreased in the order of S1 > S2 > S3.
Distribution of phase speciation of trace metals varied with location. Nickel existed in truly dissolved phase predominately(66 ﹪at S1, 79.7 ﹪at S2 and 84.6 ﹪at S3). For the other metals, either particle or truly dissolved phase was the major species at each sampling station. For zinc, 56.1 ﹪at S1 was in truly dissolved phase, 68.1 ﹪at S2 and 59.6 ﹪ at S3 were in particulate phase. For copper, 67.5 ﹪at S1 was in particulate phase, 56.7 ﹪at S2 and 89.9 ﹪at S3 were in truly dissolved phase. For manganese, 56.3 ﹪at S1 was in truly dissolved phase, 79.8 ﹪at S2 and 72.1 ﹪at S3 were in particulate phase. For lead, 51.7 ﹪at S1 and 66.0 ﹪at S3 were in truly dissolved phase, 63.5 ﹪at S2 was in particulate phase.
The percentages of TOC and metals in colloidal phase of the filter-passing pool were low at all sampling stations and decreased in the order of S1 > S2 > S3. They were found predominately in truly dissolved fraction. The results also show that Kaohsiung harbor (S1) had the highest percentage of colloidal fraction, followed by coastal water (S2), open sea (S3).
Values of partition coefficient between colloids and true solution(Kc ) in the Kaohsiung harbor and nearby coastal areas were lower than the Kc values observed in Galveston Bay during July 1995.
目錄
中文摘要………………………………………………………………………..I
英文摘要……………………………………………………………………...III
目錄……………………………………………………………………………V
圖目錄………………………………………………………………………..VII
表目錄………………………………………………………………………...IX
壹、前言……………………………………………………………………..1
一、研究緣起………………………………………………………… 1
二、研究海域背景資料………………………………………………...3
貳、材料與方法……………………………………………………………...7
一、藥品與儀器…………………………………………………………7
二、實驗器材的清洗……………………………………………………11
三、水樣採集及處理……………………………………………………11
四、樣品保存……………………………………………………………19
五、樣品分析…………………………………………………………….19
六、汞燈消化實驗……………………………………………………….20
七、品保和品管………………………………………………………….20
參、結果………………………………………………………………………24
一、基本水文資料……………………………………………………… 24
二、總有機碳…………………………………………………………….24
三、重金屬……………………………………………………………….30
肆、討論………………………………………………………………………49
一、CFF 的濃縮效果及breakthrough現象…………………………….49
二、總有機碳…………………………………………………………….49
三、消化前後重金屬物種分佈及差異………………………………….53
四、分布係數…………………………………………………………….62
伍、結論………………………………………………………………………66
陸、參考文獻…………………………………………………………………68
陸、參考文獻Bertine, K. K. and VernonClark, R. (1996) Elemental composition of the colloidal phase isolated by cross-flow filtration from coastal seawater samples. Marine Chemistry. 55, 189-204.Buesseler, K. O., Bauer, J. E., Chen, R. F., Eglinton, T. I., Gustafsson O., Landing, W., Mopper, K., Moran, S. B., Santschi, P. H., VernonClark R. and Wells, M. L. (1996) An intercomparison of cross-flow filtration techniques used for sampling marine colloids: Overview and organic carbon results. Marine Chemistry. 55, 1-31.Choe, K.-Y. and Gill, G. A. (2001) Isolation of colloidal monomethyl mercury in natural waters using cross-flow ultrafiltration techniques. Marine Chemistry. 76, 305-318.Croot, P. L. and Hunter, K. A. (1998) Trace metal distributions across the continental shelf near Otago Peninsula, New Zealand. Marine Chemistry. 62, 185-201.Dai, M., Buesseler, K. O., Ripple, P., Andrews, J., Belastock, R. A., Gustafsson, O. and Moran, S. B. (1998) Evaluation of two cross-flow ultrafiltration membranes for isolating marine organic colloids. Marine Chemistry. 62, 117-136.Gustafsson, O., Buesseler, K. O. and Gschwend, P. M. (1996) On the integrity of cross-flow filtration for collecting marine organic colloids. Marine Chemistry. 55, 93-111.Guentzel, J. L., Powell, R. T., Landing, W. M. and Mason, R. P. (1996) Mercury associated with colloidal material in an estuarine and an open-ocean environment. Marine Chemistry. 55, 177-188.Guo, L., Coleman Jr., C. H. and Santschi, P. H. (1994) The distribution of colloidal and dissolved organic carbon in the Gulf of Mexico. Marine Chemistry. 45, 105-119.Guo, L. and Santschi, P. H. (1996) A critical evaluation of the cross-flow ultrafiltration technique for sampling colloidal organic carbon in seawater. Marine Chemistry. 55, 113-127.Guo, L. and Santschi, P. H. (1997) Isotopic and elemental characterization of colloidal organic matter from the Chesapeake Bay and Galveston Bay. Marine Chemistry. 59, 1-15.Guo, L., Santschi, P. H. and Warnken, K. W. (2000) Trace metal composition of colloidal organic material in marine environments. Marine Chemistry. 70, 257-275.Ingri, J., Widerlund, A., Land, M., Gustafsson, O., Andersson, P. and Ohlander, B. (2000) Temporal variations in the fractionation of the rare earth elements in a boreal river; the role of colloidal particles. Chemical Geology. 166, 23-45.Lead, J. R., Taylor, J. H., Davison, W. and Harper, M. (1999) Trace metal sorption by natural particles and coarse colloids. Geochimica et Cosmochimica Acta. 63, 1661-1670. Millero, F. J. and Sohn, M. L. (1992) Chemical Oceanography. CRC Press, Boca Raton, Florida, USA.Mopper, K., Feng, Z., Bentjen, S. B. and Chen, R. F. (1996) Effects of cross-flow filtration on the absorption and fluorescence properties of seawater. Marine Chemistry. 55, 53-74.Muller, F. L. L. (1996) Interactions of copper, lead and cadmium with the dissolved colloidal and particulate components of estuarine and coastal water. Marine Chemistry. 52, 245-268.Nishioka, J., Takeda, S., Wong, C. S. and Johnson, W. K. (2001) Size-fractionated iron concentrations in the northeast Pacific Ocean: Distribution of soluble and small colloidal iron. Marine Chemistry. 74, 157-179.Pai, S.-C., Whung, P. Y. and Lai, R. U. (1988) Pre-concentration efficiency of chelex-100 resin for heavy metals in seawater. Analytica Chimica Acta. 211, 257-270.Porcelli, D., Andersson, P. S., Wasserburg, G. J., Ingri, J. and Baskaran M. (1997) The importance of colloids and mires for the transport of uranium isotopes through the Kalix River watershed and Baltic Sea. Geochimica et Cosmochimica Acta. 61, 4095-4113.Powell, R. T., Landing, W. M. and Bauer, J. E. (1996) Colloidal trace metals, organic carbon and nitrogen in a southeastern U.S. estuary. Marine Chemistry. 55, 165-176.Swartz, C. H., Ulery, A. L. and Gschwend, P. M. (1997) An AEM-TEM study of nanometer-scale mineral associations in an aquifer sand: Implications of colloid mobilization. Geochimica et Cosmochimica Acta. 61, 707-718.Turner, A. (1996) Trace-metal partitioning in estuaries: importance of salinity and particle concentration. Marine Chemistry. 54, 27-39.Wells, M. L., Smith, G. J. and Bruland, K. W. (2000) The distribution of colloidal and particulate bioactive metals in Narragansett Bay, RI. Marine Chemistry. 71, 143-163.Wen, L.-S., Stordal, M. C., Tang, D., Gill, G. A. and Santschi, P. H. (1996) An ultraclean cross-flow ultrafiltration technique for the study of trace metal phase speciation in seawater. Marine Chemistry. 55, 129-152.Wen, L.-S., Santschi, P. H. and Tang, D. (1997) Interactions between radioactively labeled colloids and natural particles : Evidence for colloidal pumping. Geochimica et Cosmochimica Acta. 61, 2867-2878.Wen, L.-S., Santschi, P., Gill, G. and Patemostro, C. (1999) Estuarine trace metal distributions in the Galveston Bay: Importance of colloidal forms in the speciation of the dissolved phase. Marine Chemistry. 63, 185-212.劉士萍(1999),朴子溪河口地區重金屬之分佈與與種之研究,國立中山大學海洋資源學系。王惠鈴(2000),離子強度效應對多環芳香烴化合物與溶解性有機物結合係數影響之研究,國立中山大學海洋環境及工程學系。葉曉倩(2000),二仁溪河口地區重金屬物種之研究-採用交錯流動過濾系統進行分離,國立中山大學海洋資源學系。鍾旭銘(2001),高雄附近海域 1O2生成濃度與環境因子之探討,國立中山大學海洋資源學系。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top