跳到主要內容

臺灣博碩士論文加值系統

(3.238.252.196) 您好!臺灣時間:2022/08/14 00:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張耿魁
研究生(外文):Geeng-Kwei Chang
論文名稱:以積分可變結構模式追蹤控制法則為基礎的伺服控制系統設計及其在滾子凸輪機構與電力系統控制之應用
論文名稱(外文):DESIGN OF SERVO CONTROL SYSTEM BY INTEGRAL VARIABLE STRUCTURE MODEL FOLLOWING CONTROL WITH APPLICATION TO ROLLER GEAR CAM AND POWER SYSTEM
指導教授:陳遵立陳遵立引用關係
指導教授(外文):Tzuen-Lih Chern
學位類別:博士
校院名稱:國立中山大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:90
語文別:英文
論文頁數:75
中文關鍵詞:電力系統控制滾子凸輪機構強韌控制系統數位控制系統馬達驅動器可變結構系統伺服控制系統數位系統
外文關鍵詞:power system controldigital control systemgloboidal index camdiscrete systemvariable structure systemsrobust control systemsmotor driveservo-control systems
相關次數:
  • 被引用被引用:0
  • 點閱點閱:259
  • 評分評分:
  • 下載下載:82
  • 收藏至我的研究室書目清單書目收藏:1
Cover
Contents
Chapter 1 Introduction
Chapter 2 Integral variable structure model following control
2.1 Formation of the dynamic equations
2.2 Choice of the control function
2.3 Determination of the sliding surface
Chapter 3 Servo motor control by IVSMFC
3.1 Modeling of BLDC motor servo system
3.2 Design of the velocity controller by IVSMFC
3.3 Design of the position controller by IVSMFC
3.4DSP-based servo drive system
3.5 Experimental results
Chapter 4 Globoidal cam indexing servo drive control by IVSMFC with load torque estimator
4.1 Globoidal index cam
4.2 robustness weakening of the IVSMFC
4.3 Load torque estimator based on derivative estimation
4.4 Experimental evaluation
4.5 Derivation of the upper bound of the estimation error
Chapter 5 Modified discrete integral variable structure model following control
5.1 Formation of the discrete dynamic equayions
5.2 The non-ideal sliding motion
5.3 Determination of the control function
5.4 Determination of the sliding surface and the integral gain
5.5 The elimination of the chattering phenomena
Chapter 6 Modified discrete integral variable structure model following control of synchronous generator
6.1 The power system
6.2 Application of the MDIVSMFC
6.3 System response analysis by ideal sliding motion
6.4 Simulation results
6.5 The nonlinear dynamics of the power system used
[1]Alexander Weinmann, Uncertain Models and Robust Control. New York: Springer-Verlag/Wien, 1991.
[2]J. Y. Hung, W. Gao and J. C. Hung, “Variable structure control of nonlinear systems,” IEEE Trans. Industrial Electronics, 40, pp. 45-55, 1993.
[3]J. J. Slotine, “Sliding controller design for nonlinear systems,” Int. J. Control, 40, no. 2, pp. 421-434, 1984.
[4]J. J. Slotine and W. Li, Applied Nonlinear Control. Englewood Cliffs, NJ: Prentice-Hall, 1987.
[5]V. I. Utkin, “Variable structure systems with sliding modes,” IEEE Trans. Automatic Control, 22, pp. 212-222, Mar. 1977.
[6]G. S. Buja and A. Souliaev, “A variable structure controller,” IEEE Trans. Automat. Contr., 33, pp. 206-209, 1988.
[7]U. Itkis, Control systems of variable structure. New York: John Wiley, 1976.
[8]T. L. Chern, and Y. C. Wu, “An Optimal variable structure control with integral compensation for electrohydraulic position control systems,” IEEE Trans. Industrial Electronics, 39, no. 5, pp. 460-463 1992.
[9]T. L. Chern, and Y. C. Wu, “Integral variable structure approach for robot manipulators,” IEE Proc., Pt D, 139, pp. 161-166, 1992.
[10]T. L. Chern, and Y. C. Wu, “Design of brushless DC position servo systems using integral variable structure approach,” IEE Proc., Pt B, 140, pp. 27-34, 1993.
[11]T. L. Chern and J. S. Wong, “DSP based Integral Variable Structure Control for DC motor servo Drivers,” IEE Proc. Control Theory Appl., 142, pp. 444-450, 1995.
[12]T. L. Chern, C. W. Chuang and R. L. Jiang, “Design of Discrete Integral Variable Structure Control Systems and Application to Brushless DC motor,” Automatica, 32, pp. 773-779, 1996.
[13]T. L. Chern, C. L. Liu, C. F. Jong and G. M. Yan, “DSP-based Discrete Integral Variable Structure Model Following Control for Vector-Controlled Induction Motor Drivers,” IEE Proc. Electr. Power Appl., 143, pp. 467-474, 1996.
[14]T. L., Chern, Jerome Chang, and G. K. Chang, “DSP-based integral variable structure model following control for brushless DC motor drivers,” IEEE Trans. on Power Electronics, 12, pp. 53-63 1997.
[15]K. Furuta, “Sliding mode control of a discrete system,” Syst. Contr. Lett., 14, pp. 145-152, 1990.
[16]P. Kunder, Power system stability and control. New York: McGraw-Hill, 1994.
[17]V. I. Utkin, Sliding Modes in Control and Optimization. Heidelberg, Berlin: Springer-Verlag, 1992.
[18]P. C. Krause and O. Wasynczuk, Electromechanical Motion Devices. New York: McGraw-Hill, 1989.
[19]D. M. Brod and D. W. Novotny, “Current control of VSI-PWM inverters,” IEEE Trans. Industrial Applications, 21, pp. 562-570, 1985.
[20]F. Y. Chen, Mechanics and Design of Cam Mechanisms. New York: Pergamon Press, 1982.
[21]H. A. Rothbart, Cams: Design, Dynamics, and Accuracy. New York: John Wiley & Sons, 1956.
[22]D. Tesar and G. K. Mathew, The Dynamics Synthesis, Analysis, and Design of Modeled Cam Systems. Lexington Books, 1976.
[23]D. M. Tsay and B. J. Lin, “Design and Machining of Globoidal Index Cams,” ASME Journal of Manufacturing Science and Engineering, 119, pp. 21-29, 1997.
[24]J. J. E. Slotine and S. S. Sastry, “Tracking Control of Nonlinear Systems using Sliding Surfaces with Application to Robot Manipulators,” Int. J. Control, 38, pp. 465-492, 1983.
[25]K. Furuta, “Sliding Mode Control of A Discrete System,” Systems & Control Letters, 14, pp. 145-152, 1990.
[26]Golembo et al., “Application of Piecewise-Continuous Dynamic Systems to Filtering Problems,” Auto. Remote Contr., 37, pp. 369-377, 1976.
[27]J. X. Xu, L. T. Heng and W. Mao, “On the Design of Adaptive Derivative Estimator using Variable Structure,” Proc. 1995 American Contr. Conference, pp. 529-533, 1995.
[28]C. L. Phillips and H. T. Nagle, Digital Control System Analysis and Design. New Jersey: Prentice Hall, 1990.
[29]B. C. Kuo, Automatic control systems. New York: Prentice Hall, 1996.
[30]V. I. Utkin, Sliding Modes and their Application in Variable Structure Systems. Moscow: Mir Publishers, 1978.
[31]V. I. Utkin and K. D. Yang, “Methods for Constructing Discontinuity Planes in Multidimensional Variable Structure Systems,” Automat. Remote Control, 39, pp. 1466-1470, 1978.
[32]IEEE committee report, “Proposed excitation system definitions for synchronous machines,” IEEE Trans. on Power Apparatus and Systems, 88, pp. 1248—1258, 1969.
[33]F. P. Demello and C. Concordia, “Concepts of synchronous machine stability as affected by excitation control,” IEEE Trans. on Power Apparatus and Systems, 88, pp. 316—329, 1969.
[34]P. M. Anderson and A. A. Fouad, Power System Control and Stability. Ames, IA: The Iowa State University Press, 1977.
[35]W. C. Chan and Y. Y. Hsu, “Automatic generation control of interconnected power systems using variable-structure controllers,” IEE Proc. Pt C, 128, pp. 269-279, 1981.
[36]M. E. Aggoune, F. Boudjemaa, A. Bensenouci, A. Hellal, M. R. Elmesai and S. V. Vadari, “Design of variable structure regulator using pole assignment technique,” IEEE Trans. on Automatic Control, 39, pp. 2106-2110, 1994.
[37]W. C. Chan and Y. Y. Hsu, “An optimal variable structure stabilizer for power system stabilization,” IEEE Trans. on Power Apparatus and Systems, 102, pp. 1738-1747, 1983.
[38]Y. Y. Hsu and K. L. Liou, “Design of self-tuning PID power system stabilizers for synchronous generators,” IEEE Trans. Energy Conversion, 2, pp. 343-348, 1987.
[39]Y. Y. Hsu and C. H. Cheng, “Variable structure and adaptive control of a synchronous generator,” IEEE Trans. Aerospace and Electronic Systems, 24, pp. 337-345, 1988.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top