|
REFERENCES [Ahm.1]M. S. Ahmed, Neural controllers for nonlinear state feedback L2-gain control, IEE Proceedings-Control Theory Applications 147 (3) (2000) 239-246. [Ahm.2]M. S. Ahmed, I. A. Tasadduq, Neural servocontroller for nonlinear MIMO plant, IEE Proceedings-Control Theory Applications 145 (3) (1998) 277-290. [Ahm.3]M. S. Ahmed, S. H. Riyaz, Design of dynamic neural observers, IEE Proceedings-Control Theory Applications 147 (3) (2000) 257-266. [Ast.1]K. J. Astrom, B. Wittenmark, Adaptive control, Addison-Wesley, Massachusetts, 1995. [Ast.2]K. J. Astrom, T. Hagglind, Automatic tuning of simple regulators with specifications on phase and amplitude margins, Automatica, 20 (5) (1984) 645-651. [Ast.3]K. J. Astrom, T. Hagglind, Industrial adaptive controllers based on frequency response techniques, Automatica, 27 (4) (1991) 599-609. [Bla.1]A. Blanco, M. Delgado, M. C. Pegalajar, A real-coded genetic algorithm for training recurrent neural networks, Neural Networks 14 (2001) 93-105. [Brd.1]M. A. Brdys, G. J. Kulawski, J. Quevedo, Recurrent networks for nonlinear adaptive control, IEE Proceedings-Control Theory Applications 145 (2) (1998) 177-188. [Car.1]J. Carvajal, G. Chen, H. Ogmen, Fuzzy PID controller: design, performance evaluation, and stability analysis, Information Sciences 123 (2000) 249-270. [Cha.1]W. D. Chang, R. C. Hwang, J. G. Hsieh, The studies of adaptive control by autotuning neural network, Proceedings of Systemics, Cybernetics and Informatics, Orlando, USA, 2000, 182-187. [Cha.2]W. D. Chang, R. C. Hwang, J. G. Hsieh, Adaptive control of multivariable dynamic systems using independent self-tuning neurons, Proceedings of the tenth IEEE International Conference on Tools with Artificial Intelligence, Taipei, Taiwan, 1998, 68-73. [Cha.3]W. D. Chang, R. C. Hwang, J. G. Hsieh, A single auto-tuning neural controller for nonlinear dynamic systems, Proceedings of IEEE International Conference on SMC, Tokyo, Japan, 1999, I461-I465. [Cha.4]W. D. Chang, R. C. Hwang, J. G. Hsieh, Stable direct adaptive neural controller of nonlinear systems based on single auto-tuning neuron, Neurocomputing. (to appear) [Cha.5]W. D. Chang, R. C. Hwang, J. G. Hsieh, Adaptive PID controller based on auto-tuning neurons, Proceedings of the Eighth International Fuzzy Systems Association World Congress, Taipei, Taiwan, 1999, 802-805. [Cha.6]W. D. Chang, R. C. Hwang, J. G. Hsieh, Design of PID controller tuning based on real-coded genetic algorithms, submitted to Information Sciences. [Cha.7]W. D. Chang, R. C. Hwang, J. G. Hsieh, An auto-tuning PID control for a class of nonlinear systems based on Lyapunov approach, Journal of Process Control. (to appear) [Chc.1]C. T. Chen, W. D. Chang, A feedforward neural network with function shape autotuning, Neural Networks 9 (4) (1996) 627-641. [Che.1]F. C. Chen, Back-propagation neural networks for nonlinear self-tuning adaptive control, IEEE Control Systems Magazine April (1990) 44-48. [Chl.1]C. L. Chen, F. Y. Chang, Design and analysis of neural/fuzzy variable structural PID control systems, IEE Proceedings-Control Theory Applications 143 (2) (1996) 200-208. [Cht.1]C. T. Chao, C. C. Teng, A PD-like self-tuning fuzzy controller without steady-state error, Fuzzy Sets and Systems 87 (1997) 141-154. [Cui.1]X. Cui, K. G. Shin, Direct control and coordination using neural networks, IEEE Transactions on Systems, Man, and Cybernetics 23 (3) (1993) 686-697. [Dav.1]L. Davis, Handbook of genetic algorithms, Van Nostrand, New York, 1991. [Deb.1]K. Deb, S. Gulati, Design of truss-structures for minimum weight using genetic algorithms, Finite Elements in Analysis and Design 37 (2001) 447-465. [Fra.1]G. F. Franklin, J. D. Powell, A. Emamai-Naeini, Feedback control of dynamic systems, Addison-Wesley, Massachusetts, 1986. [Ge.1]S. S. Ge, C. C. Hang, T. Zhang, Adaptive neural network control of nonlinear systems by state and output feedback, IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics 29 (6) (1999) 818-828. [Gol.1]D. E. Goldberg, Genetic algorithms in search, optimization and machine learning, Addison-Wesley, Massachusetts, 1989. [Gor.1]M. B. Gorzalczany, On some idea of a neuron-fuzzy controller, Information Sciences 120 (1999) 69-87. [Han.1]U. D. Hanebeck, G. K. Schmidt, Genetic optimization of fuzzy networks, Fuzzy Sets and Systems 79 (1996) 59-68. [He.1]S. He, K. Reif, R. Unbehauen, A neural approach for control of nonlinear systems with feedback linearization, IEEE Transactions on Neural Networks 9 (6) (1998) 1409-1421. [Hem.1]E. M. Hemerly, C. L. Nascimento Jr, An NN-based approach for tuning servocontrollers, Neural Networks 12 (1999) 513-518. [Hu.1]B. Hu, G. K. I. Mann, R. G. Gosine, New methodology for analytical and optimal design of fuzzy PID controllers, IEEE Transactions on Fuzzy Systems 7 (5) (1999) 521-539. [Hua.1]Y. P. Huang, C. H. Huang, Real-valued genetic algorithm for fuzzy grey prediction system, Fuzzy Sets and Systems 87 (1997) 265-276. [Ich.1]Y. Ichikawa, T. Sawa, Neural network application for direct feedback controllers, IEEE Transactions on Neural Networks 3 (2) (1992) 224-231. [Jeo.1]G. J. Jeon, I. Lee, Neural network indirect adaptive control with fast learning algorithm, Neurocomputing 13 (1996) 185-199. [Kha.1]S. Khanmohammadi, I. Hassanzadeh, M. B. B. Sharifian, Modified adaptive discrete control system containing neural estimator and neural controller, Artificial Intelligence in Engineering 14 (2000) 31-38. [Kos.1]E. B. Kosmatopoulos, Universal stabilization using control Lyapunov functions, adaptive derivative feedback, and neural network approximators, IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics 28 (3) (1998) 472-476. [Lee.1]J. Lee, S. W. Sung, Comparison of two identification methods for PID controller tuning, AIChE Journal 39 (4) (1993) 695-697. [Leu.1]Y. G. Leu, T. T. Lee, W. Y. Wang, Observer-based adaptive fuzzy-neural control for unknown nonlinear dynamical systems, IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics 29 (5) (1999) 583-591. [Lev.1]A. Leva, PID autotuning algorithm based on relay feedback, IEE Proceedings-D 140 (5) (1993) 328-337. [Lev.2]A. Leva, A. M. Colombo, Method for optimising set-point weights in ISA-PID autotuners, IEE Proceedings-Control Theory Applications 146 (2) (1999) 137-146. [Lig.1]G. Lightbody, G. W. Irwin, Nonlinear control structures based on embedded neural system models, IEEE Transactions on Neural Networks 8 (3) (1997) 553-567. [Lin.1]F. J. Lin, W. J. Hwang, R. J. Wai, A supervisory fuzzy neural network control system for tracking periodic inputs, IEEE Transactions on Fuzzy Systems 7 (1) (1999) 41-52. [Lic.1]C. T. Lin, C. P. Jou, Controlling chaos by GA-based reinforcement learning neural network, IEEE Transactions on Neural Networks 10 (4) (1999) 846-859. [Lis.1]S. C. Lin, Y. Y. Chen, Design of self-learning fuzzy sliding mode controllers based on genetic algorithms, Fuzzy Sets and Systems 86 (1997) 139-153. [Luy.1]W. L. Luyben, A simple method for tuning SISO controllers in a multivariable system, Industrial & Engineering Chemistry Product Research and Development 25 (1986) 654-660. [Mae.1]Y. Maeda, R. J. P. De Figueiredo, Learning rules for neuro-controller via simultaneous perturbation, IEEE Transactions on Neural Networks 8 (5) (1997) 1119-1130. [May.1]M. A. Mayosky, G. I. E. Cancelo, Direct adaptive control of wind energy conversion systems using Gaussian networks, IEEE Transactions on Neural Networks 10 (4) (1999) 898-905. [Mcf.1]M. B. Mcfarland, A. J. Calise, Neural networks and adaptive nonlinear control of agile antiair missiles, Journal of Guidance, Control, and Dynamics 23 (3) (2000) 547-553. [Mud.1]R. K. Mudi, N. R. Pal, A robust self-tuning scheme for PI- and PD-type fuzzy controllers, IEEE Transactions on Fuzzy Systems 7 (1) (1999) 2-16. [Nar.1]K. S. Narendar, K. Parthasarathy, Identification and control of dynamical systems using neural networks, IEEE Transactions on Neural Networks 1 (1) (1990) 4-27. [Oma.1]S. Omatu, M. Khalid, R. Yusof, Neuro-control and its applications, Springer, London, 1996. [Par.1]Y. M. Park, M. S. Choi, K. Y. Lee, An optimal tracking neuro-controller for nonlinear dynamic systems, IEEE Transactions on Neural Networks 7 (5) (1996) 1099-1110. [Por.1]B. Porter, A. H. Jones, Genetic tuning of digital PID controllers, Electronic Letters 28 (9) (1992) 843-844. [Poz.1]A. S. Poznyak, W. Yu, Robust asymptotic neuro-observer with time delay term, International Journal of Robust and Nonlinear Control 10 (2000) 535-559. [Rov.1]G. A. Rovithakis, Stable adaptive neuro-control design via Lyapunov function derivative estimation, Automatica 37 (2001) 1213-1221. [Sas.1]S. Sastry, M. Bodson, Adaptive control: stability, convergence, and robustness, Prentice-Hall, New Jersey, 1989. [Sch.1]W. H. Schiffmann, H. W. Geffers, Adaptive control of dynamic systems by back propagation networks, Neural Networks 6 (1993) 517-524. [Sen.1]T. L. Seng, M. B. Khalid, R. Yusof, Tuning of a neuro-fuzzy controller by genetic algorithm, IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics 29 (2) (1999) 226-236. [Sex.1]R. S. Sexton, J. N. D. Gupta, Comparative evaluation of genetic algorithm and backpropagation for training neural networks, Information Sciences 129 (2000) 45-59. [Sha.1]S. M. Shahruz, A. L. Schwartz, Nonlinear PI compensators that achieve high performance, Transactions of the ASME Journal of Dynamic Systems, Measurement, and Control 119 (1997) 105-110. [She.1]A. F. Sheta, K. D. Jong, Time-series forecasting using GA-tuned radial basis functions, Information Sciences 133 (2001) 221-228. [Slo.1]J. J. E. Slotine, W. P. Lin, Applied nonlinear control, Prentice-Hall, London, 1991. [Spo.1]J. T. Spooner, K. M. Passino, Decentralized adaptive control of nonlinear systems using radial basis neural networks, IEEE Transactions on Automatic Control 44 (11) (1999) 2050-2057. [Sun.1]F. C. Sun, Z. Q. Sun, R. J. Zhang, Y. B. Chen, Neural adaptive tracking controller for robot manipulators with unknown dynamics, IEE Proceedings-Control Theory Applications 147 (3) (2000) 366-370. [Tao.1]C. W. Tao, J. S. Taur, Flexible complexity reduced PID-like fuzzy controllers, IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics 30 (4) (2000) 510-516. [Tsa.1]D. L. Tsay, H. Y. Chung, C. J. Lee, The adaptive control of nonlinear systems using the Sugeno-Type of fuzzy logic, IEEE Transactions on Fuzzy Systems 7 (2) (1999) 225-229. [Tse.1]H. C. Tseng, V. H. Hwang, Servocontroller tuning with fuzzy logic, IEEE Transactions on Control System Technology 1 (4) (1993) 262-269. [Tsu.1]S. Tsutsui, D. E. Goldberg, Search space boundary extension method in real-coded genetic algorithm, Information Sciences 133 (2001) 229-247. [Vis.1]A. Visioli, Fuzzy logic based set-point weight tuning of PID controllers, IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans 29 (6) (1999) 587-592. [Vis.2]A. Visioli, Tuning of PID controllers with fuzzy logic, IEE Proceedings-Control Theory Applications 148 (1) (2001) 1-8. [Vla.1]C. Vlachos, D. Williams, J. B. Gomm, Genetic approach to decentralised PI controller for multivariable processes, IEE Proceedings-Control Theory Applications 146 (1) (1999) 58-64. [Wad.1]D. H. Wang, P. Bao, Enhancing the estimation of plant Jacobian for adaptive neural inverse control, Neurocomputing 34 (2000) 99-115. [Wai.1]R. J. Wai, H. H. Lin, F. J. Lin, Hybrid controller using neural networks for identification and control of induction servo motor drive, Neurocomputing 35 (2000) 91-112. [Wa1.1]L. X. Wang, Adaptive fuzzy systems and control: design and stability analysis, Prentice-Hall, New Jersey, 1994. [Wal.2]L. X. Wang, A Course in fuzzy systems and control, Prentice-Hall, New Jersey, 1997. [Wan.1]Q. G. Wang, B. Zou, T. H. Lee, Q. Bi, Auto-tuning of multivariable PID controller from decentralized relay feedback, Automatica, 33 (3) (1997) 319-330. [Yin.1]H. Ying, Theory and application of a novel fuzzy PID controller using a simplified Takagi-Sugeno rule scheme, Information Sciences 123 (2000) 281-293. [Yus.1]R. Yusof, S. Omatu, A multivariable self-tuning PID controller, Internal Journal of Control 57 (6) (1993) 1387-1403. [Zam.1]M. Zamparelli, Genetically trained Cellular neural networks, Neural Networks, 10 (6) (1997) 1143-1151. [Zuo.1]W. Zuo, Multivariable adaptive control for a space station using genetic algorithms, IEE Proceedings-Control Theory Applications 142 (2) (1995) 81-87.
|