跳到主要內容

臺灣博碩士論文加值系統

(3.233.217.106) 您好!臺灣時間:2022/08/17 13:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊進德
研究生(外文):Chin-Der Yang
論文名稱:配電系統規劃的可靠度成本模型設計與價值分析之研究
論文名稱(外文):Reliability Cost Model Design and Worth Analysis for Distribution System Planning
指導教授:林惠民林惠民引用關係
指導教授(外文):Whei-Min Lin
學位類別:博士
校院名稱:國立中山大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:139
中文關鍵詞:機率分佈成本模型平均斷電成本模型進化規劃法可靠度成本蒙地卡羅時序模擬
外文關鍵詞:Reliability worthProbability distribution model(PDM)Evolutionary ProgrammingMonte-Carlo time sequential simulationaverage or aggregated model (AAM)
相關次數:
  • 被引用被引用:14
  • 點閱點閱:463
  • 評分評分:
  • 下載下載:154
  • 收藏至我的研究室書目清單書目收藏:2
封面
誌謝
中文摘要
英文摘要
目錄
圖目錄
表目錄
第一章 緒論
1-1 研究背景及方法
1-2 主要貢獻
1-3 論文內容概述
第二章 配電系統可靠度計算及評估
2.1前言
2.2可靠度成本指標
2.2.1一般化配電系統架構
2.2.2網路簡化
2.2.3用戶導向指標
2.2.4負載及能量導向指標
2. 2. 5實例說明
2.3本章結論
第三章 考慮可靠度成本之配電系統規劃
3.1前言
3.2可靠度模型推導
3.2.1用戶斷電成本計算
3.2.2系統規劃目標函數
3.3進化規劃法應用
3.3.1進化規劃法介紹
3.3.2配電系統規劃應用
3.4成本估算方法
3.5本章結論
第四章 機率分佈成本模型可靠度指標
4.1前言
4.2放射狀基礎函數類神經網路
4.3正交化最小平方學習程式
4.4機率分佈成本模型理論
4.5整合配電機率分佈成本模型之建立
4.6本章結論
第五章 蒙地卡羅時序模擬法可靠度評估
5.1 前言
5.2元件模型及參數
5.3負載點及系統之可靠度指標及其分佈
5.4成本取樣程式
5.5蒙地卡羅時序模擬法
5.6 本章結論
第六章 系統可靠度評估與整合測試
6.1前言
6.2配電系統規劃測試
6.2.1系統資料
6.2.2配電規劃測試結果
6.3放射狀基礎函數類神經網路效能測試
6.3.1收歛性測試
6.3.2效能測試
6.4 配電系統可靠度評估測試
6.4.1系統資料
6.4.2用戶成本模型資料
6.4.3可靠度評估模擬結果
6.5本章結論
第七章 結論及未來發展方向
7.1結論
7.2未來發展方向
參考文獻
著作目錄
作者簡歷
參考文獻
[1]L. Goel and R. Billinton, “Determination of Reliability Worth for Distribution System Planning,” IEEE Trans. on Power Delivery, Vol. 9, No.3, July 1994, pp.1577-1583.
[2]L. Goel and R. Billinton, “A Procedure for Evaluating Interrpted Energy Assessment Rates in an Overall Electric Power System,” IEEE Trans. on Power Systems, Vol. 6, No.4, Nov. 1991, pp.1396-1403.
[3]J. Oteng-Adjei and R. Billinton, “Evaluation of Interrupted Energy Assessment Rates in Composite Systems,” IEEE Trans. on Power Systems, Vol. 5, No.4, Nov. 1990, pp.1317-1323.
[4]R.N. Allan and R. Billinton, “Power system reliability and its assessment: Part 1 Background and generating capacity,” Power Engineering Journal, Vol. 6, No. 4, 1992, pp. 191-196.
[5]R.N. Allan and R. Billinton, “Power system reliability and its assessment: Part 2 Composite generation and transmission system,” Power Engineering Journal, Vol. 6, No. 6, 1992, pp. 291-297.
[6]R.N. Allan and R. Billinton, “Power system reliability and its assessment: Part 3 Distribution systems and economic considerations,” Power Engineering Journal, Vol. 6, No. 6, Aug. 1993, pp. 185-192.
[7]R. Billinton and R.N. Allan, “Reliability evaluation of power systems,” Plenum Publishing, New York, 1984.
[8]R. Billinton, and S. Jonnavithula, “A test system for teaching overall power system reliability assessment,” IEEE Trans. on Power Systems, Vol. 11, No.1, 1996, pp.1670-1676.
[9]R. Billinton, and P. Wang, “Reliability-network-equivalent approach to distribution-system-reliability evaluation, ” IEE Proc.-Gener. Trans. Distrib., Vol. 145, No. 2, 1998, pp.149-153.
[10]R.N. Allan, and, M.G. DA SILVA, “Evaluation of reliability indices and outage costs in distribution systems, ” IEEE Trans. on Power Systems, Vol.10, No.1, 1995, pp. 413-419.
[11]R.E. Brown, S. Gupta, R.D. Christie, S.S. Venkata, and R. Fletcher, “Automated primary distribution system design: reliability and cost optimization,” IEEE Trans. on Power Delivery, Vol. 12, No. 2, 1997, pp. 1017-1022.
[12]V.H. Quintana, H.K. Temraz, and K.W. Heipel, “Two-stage power system distribution planning algorithm, ” IEE Proceedings-C, Vol. 140, Jan. 1993, pp. 17-29.
[13]R. Billinton and P. Wang, “Teaching distribution system reliability evaluation using Monte Carlo simulation, ” IEEE Trans. on Power System, Vol. 14, No. 2 , 1999, pp. 397-403.
[14]R.L. Chen, K. Allen, and R. Billinton, “Value-based distribution reliability assessment and planning, ” IEEE Trans. on Power Delivery, Vol. 10, No. 1 , 1995, pp. 421-429.
[15]G. Wacker and R. Billinton, “Customer cost of electric service interruptions,” Proceedings of IEEE, Vol. 77, No. 6, June 1989, pp. 919-930.
[16]G. Tollefson, R. Billinton and G. Wacker, “Comprehensive bibliography on reliability worth and electrical service consumer interruption costs,” IEEE Trans. on Power Systems, Vol. 6, No. 4, Nov. 1991, pp. 1508-1514.
[17]G. Tollefson, R. Billinton, G. Wacker, E. Chan and J. Aweya, “Canadian customer survey to assess power system reliability worth,” IEEE Trans. on Power Systems, Vol. 9, No. 1, Nov. 1994, pp. 1508-1514.
[18]R. Ghajar, R. Billinton, and E. Chan, “Distributed nature of residential customer outage costs, ” IEEE Trans. on Power System, Vol. 11, No. 3 , 1996, pp. 1236-1244.
[19]R. Billinton, E. Chan, and G. Wacker, “Probability distribution approach to describe customer costs due to electric supply interruptions,” IEE Proc.-Gener., Trans., Distrib., Vol. 141, No. 6, Nov. 1994, pp.594-598.
[20]R. Billinton, and P. Wang, “Reliability worth of distribution system network reinforcement considering dispersed customer cost data, ” IEE Proc. Gener. Trans,. Distrib., Vol. 146, No. 3, 1999, pp. 318-324.
[21]D.V. Coury and D.C. Jorge: “Artificial neural network approach to distance protection of transmission lines’, IEEE Trans. On Power Delivery, Vol. 13, No. 1, 1998, pp. 102-108.
[22]H. Wang, and W.W. Keerthipala, “Fuzzy-neuro approach to fault classification for transmission line protection, ” IEEE Trans. On Power Delivery, Vol. 13, No. 4 , 1998, pp. 1093-1102.
[23]W.M. Lin, C.D. Yang, J.H. Lin and M.T. Tsay, “A fault classification method by RBF neural network with OLS learning procedure, ” IEEE Trans. On Power Delivery, Vol. 16, No. 4 , 2001, pp. 473-477.
[24]R.K. Aggarwal, Q.Y. Xuan, R.W. Dunn, A.T. Johns, and A. Bennett, “A novel fault classification technique for double-circuit lines based on a combined unsupervised /supervised neural network,” IEEE Trans. on Power Delivery, Vol. 14, No. 4 , 1999, pp. 1250-1255.
[25]S. Chen, C.F.N. Cowan and P.M. Grant, “Orthogonal least squares learning algorithm for radial basis function networks, ” IEEE Trans. on Neural Network, Vol. 2, No. 2 , 1991, pp. 302-309.
[26]S. Chen, C.F.N. Cowan, and P.M. Grant, “Orthogonal least squares learning algorithm for training multioutput radial basis function networks,” IEE PROCEEDINGS-F, Vol. 139, No. 6, 1992, pp. 378-384.
[27]R. Billinton and J. E. Billinton, “Distribution system reliability indices,” IEEE Trans. on Power Delivery, Vol. 4, No. 1, Jan. 1989, pp. 561-568.
[28]L. Goel and R. Billinton, “Evaluation of interrupted energy assessment rates in distribution systems,” IEEE Trans. on Power Delivery, Vol. 6, No. 4, Oct. 1991, pp. 1876-1882.。
[29]G. Toefson, R. Billinton and G. Wacker, “Comprehensive bibliography on reliability worth and electric service consumer interruption costs,” IEEE Trans. on Power Systems, Vol.6, No.4, 1991, pp. 1508-1514.
[30]R. Billinton and J. Oteng-Adjei, “Utilization of interrupted energy assessment rates in generation and transmission system planning,” IEEE Trans. on Power Systems, Vol.6, No.3, Aug. 1991, pp. 1245-1253.
[31]J.C.O. Mello, M.V.F. Pereira and A.M. Leite da Silva, “Evaluation of reliability worth in composite systems based on pseudo-sequential Monte Carlo simulation,” IEEE Trans. on Power Systems, Vol. 11, No. 3, Aug. 1996, pp. 1255-1260.
[32]R. Billinton and P. Wang, “A generalized method for distribution system reliability evaluation,” Proceedings of the 1995 WESCANEX IEEE International Conference, pp.349-354.
[33]A. Sankarakrishnan and R. Billinton, “Effective techniques for reliability worth assessment in composite system networks using Monte Carlo simulation,” IEEE Trans. on Power Systems, Vol. 9, No. 3, Aug. 1994, pp. 1318-1326.
[34]Y. Ou and L. Goel, “Using Monte Carlo simulation for overall distribution system reliability worth assessment,” IEE Proc.-Gener. Trans. Distrib., Vol. 146, No. 5, 1999, pp.535-540.
[35]R. Billinton and P. Wang, “Distribution system reliability cost/worth analysis using analytical and sequential simulation techniques,” IEEE Trans. on Power Systems, Vol.13, No.4, Nov. 1998, pp. 1245-1250.
[36]R.N. Allan, R. Billinton, I. Sjarief, L. Goel and K.S. So, “A reliability test system for educational purposes — Basic distribution system data and results,” IEEE Trans. on Power Systems, Vol. 6, No. 2, May 1991, pp. 813-820.
[37]R. Billinton and R.N. Allan, “Reliability evaluation of engineering systems: concepts and techniques,” Plenum Publishing, New York, 1992.
[38]D.M. Crawford and S.B. Holt, “A mathematical optimization technique for locating and sizing distribution substations, and deriving their optimal service areas, ” IEEE Trans. on PAS, Vol. PAS-99, No.2, March/April, 1975, pp.230-235.
[39]D.L. Wall, G.L. Thompson, and J.E.D. Northcote-Green, “An optimal model for planning radial distribution network,” IEEE Trans. on PAS, Vol. PAS-98, No.3, May/June, 1979, pp.1061-1068.
[40]J.T. Boardman and C.C. Meckiff, “A branch and bound formulation to an electricity distribution planning problem,” IEEE Trans on PAS, Vol. PAS-104, No.8, August 1985, pp.2112-2118.
[41]R.N. Adams and M.A. Laughton, “A dynamic programming network flow procedure for distribution systems,” Proc. 8th, IEEE PICA, 1973, pp.348-354.
[42]T. Gonen and I.J. Ramirez-Rosado, “Optimal Multi-Stage Planning of Power Distribution Systems," IEEE Trans on PWRD, Vol. PWRD-2, No.2, April 1987, pp.512-519.
[43]M. Ponnavaikko, K.S. Prakasa, and S.S. Venkata, “Distribution system planning through a quadratic mixed integer programming approach,” IEEE Trans., PWRD-2, No.4, October 1987, pp. 1157-1163.
[44]T.H. Fawzi, K.F. Ali, and S.M. El-Sobki, “Routing optimization of primary rural distribution feeders,” IEEE Trans. on PAS, Vol. PAS-101, No.5, May 1982, pp.1129-1133.
[45]楊維楨和廖添丁,"配電系統規劃研究(一),(二),(三),"台電工程月刊,1989.
[46]K.S. Hindi and Brameller, “Design of low-voltage distribution networks:a mathematical programming method”,□IEE Proceedings, Vol. 124, No.1, 1977, pp.54-48.
[47]V.H. Quintana, H.K. Temraz, and K.W. Heipel,□“Two-stage power system distribution planning algorithm,” IEE Proceedings-C, Vol. 140, 1993, pp.1728.
[48]K.P. Wong and C.C. Fung, “Simulated annealing based economic dispatch algorithm,” IEE Proceedings- C, Vol. 140, No. 6, 1993, pp. 509-515.
[49]F. Zhuang and F.D. Glaiana, “Unit commitment by simulated annealing,” IEEE Trans. on Power Systems, Vol. 5, No. 1, 1990, pp. 311-318.
[50]A.H. Mantawy, Y.L. Abdel-Magid and S.Z. Selim, “A simulated annealing algorithm for unit commitment”, IEEE Trans. on Power Systems, Vol. 13, No. 1, 1998, pp. 197-204.
[51]D.C. Walters and G.B. Sheble, “Genetic algorithm solution of economic dispatch with valve point loading,” IEEE Trans. on Power Systems, Vol. 8, No.3, 1993, pp. 1325-1332.
[52]G.B. Shebel and K. Britting, “Refined genetic algorithm-economic dispatch example,” IEEE Trans. on Power Systems, Vol. 10, No.1, 1995, pp. 117-124.
[53]P.H. Chen and H.C. Chang, “Large scale economic dispatch by genetic algorithm,” IEEE Trans. on Power Systems, Vol. 10, No. 4, 1995, pp. 1919-1926.
[54]S.A. Kazarlis, A.G. Bakirtzis and V. Petridis, “A genetic algorithm solution to the unit commitment problem,” IEEE Trans. on Power Systems, Vol. 11, No. 1, 1996, pp. 83-92.
[55]P.H. Chen and H.C. Chang, “Genetic aided scheduling of hydraulically coupled plants in hydro-thermal coordination,” IEEE Trans. on Power Systems, Vol. 11, No. 2, 1996, pp. 975-981.
[56]T.T. Maifeld and G.B. Sheble, “Genetic-based unit commitment algorithm,” IEEE Trans. on Power Systems, Vol. 11, No. 3, 1996, pp. 1359-1370.
[57]H.T. Yang, P.C. Yang and C.L. Huang, “A parallel genetic algorithm approach to solving the unit commitment problem: implementation on the transputer networks,” IEEE Trans. on Power Systems, Vol. 12, No. 2, 1997, pp. 661-668.
[58]C.W. Richter and G.B. Sheble, “Genetic algorithm evolution of utility bidding strategies for the competitive marketplace,” IEEE Trans. on Power Systems, Vol. 13, No. 1, 1998, pp. 256-261.
[59]H.T. Yang, P.C. Yang, and C.L. Huang, “Evolutionary programming based economic dispatch for units with non-smooth fuel cost functions,” IEEE Trans. on Power System, Vol. 11, No. 1, 1996, pp. 112-118.
[60]K.P. Wong and J. Yuryevich, “Evolutionary-programming-based algorithm for environmentally-constrained economic dispatch,” IEEE Trans. on Power Systems, Vol.13, no.2, 1998, pp. 301-306.
[61]K.A. Juste, H. Kita, E. Tanaka, and J. Hasegawa, “An evolutionary programming solution to the unit commitment problem,” IEEE Trans. on Power Systems, 1999, pp. 1452-1459.
[62]J. Yuryevich and K.P. Wong, “Evolutionary-programming based optimal power flow algorithm,” IEEE Trans. on Power Systems, Vol.14, No.4, 1999, pp. 1245-1250.
[63]D.B. Fogel, System Identification Through Simulated Evolution:A Machine Learning Approach to Model, Ginn Press., 1992, pp.45-90.
[64]S. Jonnavithula and R. Billinton, “Minimum cost analysis of feeder routing in distribution system planning,” IEEE Trans. on Power Delivery, Vol. 11. No. 4, October 1996, pp.1935-1940.
[65]楊宏澤,黃昭明與黃慶連,“以進化規劃法作電力系統短期復載預測之研究”,第九屆全國技術及職業教育研討會論文集,1994年3月,pp.19-27。
[66]H.T. Yang, C.M. Huang, and C.L. Huang, “Identification of ARMAX model for short term load forecasting:an evolutionary programming approach,” IEEE Trans. on Power Systems, Vol.11, No.1, February 1996, pp.403-408.
[67]L.L. Lai and J.M. Ma, “Application of evolutionary programming to reactive power planning-comparison with nonlinear programming approach,” IEEE Trans. on Power Systems, Vol.12, No.1, February 1997, pp.198-206.
[68]Q.H. Wu and J.T. Ma, “Power system optimal reactive power dispatch using evolutionary programming,” IEEE Trans. on Power Systems, Vol.10, No.3, pp.1243-1249, August 1995.
[69]W.M. Lin, C.D. Yang, and M.T. Tsay, “Distribution system planning with evolutionary programming and a reliability model,” IEE Proc. Gener., Trans., Distrib., Vol. 147, No. 6, November 1998, pp.336-341.
[70]W.M. Lin, F.S. Cheng and M.T. Tsay, “Feeder loss reduction by switching operations with a hybrid programming techniques,” Proceedings of the 1999 IEEE/PES T&D Conference, New Orleans, 2000. pp.1419-1424.
[71]W.M. Lin, F.S. Cheng and M.T. Tsay, “A modified evolutionary programming approach for distribution loss reduction by feeder switching,” Journal of the Chinese Institute of Electrical Engineering, Vol. 6, No. 4, 1999, pp.285-292.
[72]L.J. Fogel, A.J. Owens and M.J. Walsh, Artificial Intelligence through Simulated Evolution, New York, Wiley, 1996.
[73]A.J. Targain and L.T. Black, “Engineering Economy, ” McGraw-Hill.
[74]P. Wang and R. Billinton, “Reliability benefit analysis of adding WTG to a distribution system,” IEEE Trans. on Energy Conversion, Vol. 16, No. 2, June 2001, pp.134-139.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top