跳到主要內容

臺灣博碩士論文加值系統

(44.197.230.180) 您好!臺灣時間:2022/08/20 11:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:孫政治
研究生(外文):Zheng-Chi Sun
論文名稱:應用人工智慧於變電所自動化故障診斷
論文名稱(外文):Automatic Substation Fault Diagnosis with Artificial Intelligence
指導教授:林惠民林惠民引用關係
指導教授(外文):Whei-Min Lin
學位類別:碩士
校院名稱:國立中山大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:85
中文關鍵詞:類神經網路 機率神經網路故障類型偵測模糊理論故障區域偵測
外文關鍵詞:Probabilistic Neural NetworkFault Section DetectionFault Type DetectionArtificial Neural NetworkFuzzy Theory
相關次數:
  • 被引用被引用:11
  • 點閱點閱:537
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:3
為了確保電力系統供電品質與可靠性,系統保護佔了極重要的地位,當電力系統遭受天然災害及人為意外事故時,調度人員必須儘速找出故障位置及原因,並加以隔離,再經由復電策略恢復停電區域之電力供應,以縮短停電時間。一套完整監控系統(SCADA System)與智慧型偵測系統(Artificial Intelligence based Detection System),將有助於提升調度人員處理與排除故障的能力,若電力系統發生緊急事故時,調度員常依據保護電驛及斷路器動作的記錄,來判斷系統發生故障的區域與類型,由人力處理與解讀的方式,不僅無法縮短事故處理時間,當面對大規模事故時將無法應付,尤其面對數量過多的訊號、不明確訊號、誤動作訊號、或多重事故的訊號,增加調度員解讀的困難度。
本文提出以類神經網路(Artificial Neural Networks)應用於變電所故障區域之偵測。利用機率神經網路(Probability Neural Networks,PNN)建構故障區域偵測(Fault Section Detection)之系統以判定故障發生之區域。依據主保護與後衛保護規劃之跳脫資料作為訓練資料,執行偵測工作時則依保護設備動作情形判定故障區域,主要的情形包括單一故障、多個故障、單一故障或者多個故障包含誤動作之信號。另外,本文也提出以模糊理論為基礎作為故障類型偵測(Fault Type Detection),以改善傳統二值邏輯單一極限值的不適當性,也更適用於不明確情形下(故障接地電阻、故障點位置、負載大小)之實際配電系統。最後本文以台電某一典型的二次變電所為例,驗證本文所提方法之可行性。
Power system protection is important for service reliability and quality assurance. Various faults may occur due to natural and artificial calamity. To reduce the outage duration and promptly restore power services, fault section estimate has to be done effectively with appeared fault alarms. Dispatchers could study the changed statuses of primary/back-up relays and circuit breakers to identify the fault section and fault types. It is difficult to process too many alarms under various conditions in a large power system. Single fault, multiple faults, single and multiple faults could coexist with the failed operation of relays and circuit breakers, or with the erroneous data communication. Dispatchers
need more time to process the many uncertainties before identifying the fault.
This thesis presents the use of artificial intelligence for fault section detection in substation with neural networks. Probabilistic Neural Networks (PNN) are proposed for fault detection system in substation. The proposed methodology will use primary/back-up information of protective relays and circuit breakers to detect the fault sections involving single fault, multiple faults, or fault with the failure operation of the relays and circuit breakers. This paper also presents a fuzzy theory-based method to identify fault types. It is derived to improve the inadequacy of making decisions by selecting a fixed threshold value and has the capability of non-deterministic decision making with a prior knowledge of uncertainties in fault location, fault resistance and the a size of loads. The proposed approach has been tested on a typical taipower system with accurate results.
摘要I
AbstractIII
目錄V
圖目錄VIII
表目錄X
第一章 緒論1
1.1 研究動機1
1.2 研究背景及方法1
1.3 論文內容概述4
第二章 國內電力調度控制自動化系統之介紹5
2.1 前言5
2.2 台電調度自動化系統架構5
2.2.1階層調度控制7
2.2.2調度系統軟體功能10
2.2.3調度系統硬體架構11
2.3 SCADA系統12
2.3.1 SCADA系統硬體設備12
2.3.2 SCADA系統軟體設備19
2.4自動化系統下之事故處理及現行方式之缺點23

第三章 類神經網路應用於故障區域之偵測24

3.1前言24
3.2類神經網路之介紹24
3.2.1類神經網路模型25
3.2.2類神經網路架構27
3.2.3類神經網路的運作29
3.2.4類神經網路的選用30
3.3機率類神經網路31
3.4偵測系統之設計34
3.5解釋單元之架構40
3.6本章結論47
第四章 模糊理論應用於故障類型之偵測48
4.1前言48
4.2模糊理論之介紹48
4.2.1二值邏輯與模糊集合50
4.2.2模糊集合之定義及基本運算52
4.3故障分析及模糊推論機之建構54
4.3.1 歸屬函數及模糊規則庫之建立54
4.3.2 故障類型之推論流程63
4.4本章結論64
第五章 系統實例整合測試65
5.1系統簡介65
5.2 測試一:單一故障且有保護設備發生誤動作65
5.3 測試二:多重故障且無保護設備發生誤動作70
5.4 測試三:多重故障且有保護設備發生誤動作74
5.5 本章結論77
第六章 結論與未來的研究方向78
6.1 結論78
6.2 未來研究方向80
參考文獻81
附錄85
圖 目 錄
圖1-1 論文之研究流程圖3
圖2-1 電力系統示意圖6
圖2-2 調度控制系統階層連繫圖8
圖2-3 台電階層調度控制系統架構圖9
圖2-4 事故處理流程圖23
圖3-1 單一生物神經元模型26
圖3-2 順向神經網路架構圖28
圖3-3 回授神經網路架構圖28
圖3-4 機率神經網路架構圖32
圖3-5 簡易之配電系統圖34
圖3-6 自動化電驛狀態取樣接線圖35
圖3-7 保護設備操作過程37
圖3-8 變電所示意圖38
圖3-9 故障區間偵測系統架構圖39
圖3-10 邏輯解釋單元流程圖41
圖4-1-a 饋線B相發生單線接地故障之電流變化情形55
圖4-1-b 饋線B相發生單線接地故障之電壓變化情形55
圖4-2-a 饋線AB相發生接地故障之電流變化情形56
圖4-2-b 饋線AB相發生單線接地故障之電壓變化情形56
圖4-3-a 饋線AB相發生短路故障之電流變化情形56
圖4-3-b 饋線AB相發生短路故障之電壓變化情形57
圖4-4-a 饋線發生三相短路故障之電流變化情形57
圖4-4-b 饋線發生三相短路故障之電流變化情形57
圖4-5 發生單相接地故障在不同故障位置下電流變化之統計圖(20ohm)58
圖4-6 發生單相接地故障在不同故障位置下電流變化之統計圖(30ohm)58
圖4-7 發生單相接地故障在不同故障位置下電壓變化統計圖(20ohm)58
圖4-8 發生單相接地故障在不同故障位置下電壓變化之統計圖(30ohm)59
圖4-9 單相接地故障電流之相減分析59
圖4-10 兩相接地故障電流之相減分析59
圖4-11 單相接地故障電壓之相減分析60
圖4-12 兩相接地故障電壓之相減分析60
圖4-13 中性點電流之分析60
圖4-14 饋線電流之歸屬函數61
圖4-15 中性點電流之歸屬函數61
圖4-16 匯流排電壓之歸屬函數61
圖4-17 輸出變數之10個歸屬函數62
圖4-18 模糊推論機架構63
圖4-19 模糊推論流程圖64
圖5-1 鹽埕變電所單線圖66
圖5-2 測試範例1之故障情形67
圖5-3 測試範例1故障區間診斷之結果68
圖5-4 測試範例1故障類型模糊推論之結果69
圖5-5 測試範例2之故障情形70
圖5-6 測試範例2故障區間診斷之結果71
圖5-7-1測試範例2故障類型模糊推論之結果72
圖5-7-2測試範例2故障類型模糊推論之結果73
圖5-7-3測試範例2故障類型模糊推論之結果73
圖5-8 測試範例3之故障情形74
圖5-9 測試範例3故障區間診斷之結果75
圖5-10-1測試範例3故障類型模糊推論之結果76
圖5-10-2測試範例3故障類型模糊推論之結果77
表 目 錄
表2-1 調度系統軟體功能劃分表10
表3-1 生物體與生物模型對照表26
表3-2 機率神經網路相關資料38
表3-3 電驛事實關係表40
表4-1 傳統集合與FUZZY集合基本精神的比較表 52
表4-2 模糊規則表 62
[1] C. Fukui and J. Kawakami, “An Expert System for Fault Section
Estimation Using Information from Protective Relay and Circuit
breaker“IEEE Trans. on Power delivery, Vol.1, No.4, October 1986,
pp. 83-91.

[2] Eleri Cardozo and Sarosh N. Talukdar, “A Distributed Expert System
for Fault Diagnosis, “IEEE Trans. on Power Systems, Vol.3, No.2, May
1988, pp. 641-646.
[3] Adly A. Girgis and Melisa B. Johns, “A Hybrid Expert System for
Faulted Section Identification, Fault Type Classification and Section of
Fault Location Algorithms, “IEEE Tran. on Power Delivery, Vol.4,
No.2, April 1989, pp. 978-985.
[4] Y.Y. Hsu, F.C. Lu, Y. Chien, J.P. Liu, J.T. Lin, H.S. Yu, and R.T.
Kuo, “An Expert System for Locating Distribution System Faults,
“IEEE Trans. on Power Delivery, Vol.5, No.2, April 1990, pp. 366-371.
[5] C.A. Protopapas, K.P. Psaltiras and A.V. Machias, “An Expert System
for Substation Fault Diagnosis and Alarm Processing, “IEEE Trans. on
Power Delivery, Vol.6, No.2, April 1991, pp. 648-655.
[6] F.S. Wen and C.S. Chang, “Probabilistic Approach for Fault-section
Estimation in Power Systems Based on a Refined Genetic Algorithm,
“IEE Proc.-Gener. Transm. Distrib., Vol.144, No.2, March 1997, pp.
160-168.
[7] F.S. Wen and C.S. Chang, “Tabu Search approach to Alarm
Processing in Power System, “IEE Proc.-Gener. Transm. Distrib.,

Vol.144, No.1, January 1997, pp. 31-38.

[8] Sonja Ebron, David L. Lubkeman, and Mark White, “A Neural
Network Approach to the Detection of Incipient Faults on Power
Distribution Feeders, “IEEE Trans. on Power Delivery, Vol.5, No.2,
April 1990, pp. 905-914.
[9] Edward H.P. Chan, “Using Neural Network to Interpret Multiple
Alarms, “IEEE Computer Application in Power, April 1990, pp.
33-37.
[10] H.T. Yang, W.Y. Chang, and C.L. Huang, “A New Neural Network
Approach to On-Line Fault Section Estimation Using Information of
Protective Relays and Circuit Breakers, “IEEE Trans. on Power Delivery,
Vol.9, No.1, January 1994, pp. 220-229.
[11] T. Dalstein, T. Friedrich, B. Kulicke and D. Sobajic, “Multi Neural
Network Based to Fault Area Estimation for High Speed Protective
Relaying, “IEEE Trans. on Power Delivery,Vol.11, No.2, April 1996, pp.
740-747.
[12] N. Kandial, V.K. Sood, K. Khorasani, and R.V. Patel, “Fault
Identification in An AC-DC Transmission System Using Neural
Networks, “IEEE Tran. on Power System, Vol.7, No.2, May 1992, pp.
812-819.
[13] T. Dalstein and B. Kulicke, “Neural Network Approach to
Fault Classification for High Speed Protective Relaying, “IEEE
Transaction on Power Delivery, Vol.10, No.2, April 1995,
pp.1002-1011.
[14] T.S. Sidhu, H. Singh, and M.S. Sachdev, “Design, Implementation
and Testing of An Artificial Neural Network Based Fault Direction
Discriminator for Protecting Transmission Lines,“IEEE Transaction
on Power Delivery, Vol.10, No.2, April 1995, pp. 697-706.
[15] D.V. Couty, and D.C. Jorge, “Artificial Neural Network Approach to
Distance Protection of Transmission Lines, “IEEE Transaction on
Power Delivery, Vol.13, No.1, January 1998, pp.102-108.
[16] T. Oyama, “Fault Section Estimation in Power System Using
Boltzmann Machine,“Proceedings of Second Forum on Artificial
Neural Network Applications to Power Systems (ANNPS’93),
Japan, 1993, pp. 1-7.
[17] R.L. Jiang and Q.X. Lin, “A Neural Network Approach to
Alarm Processing of Power System in Mass Rapid Transit,
“Proceedings Of The 20TH Symposium On Electrical Power
Engineering, Taiwan, November 1999, pp. 1247-1251.
[18] 盧展南等,"配電自動化系統之控制架構研究"臺電工程月刊,
pp54-73, 1998。
[19] 鄭石洋,"變電所自動化設計手冊"臺電公司輸工處,民國80年
10月。
[20] "全面自動化調度控制第一期工程竣工報告"臺電公司電控會,民
國82年12月。
[21] 蕭一龍,"調度系統架構與設計"臺電公司,民國86年9月。
[22] "全面自動化調度控制第二期計劃可行性研究報告"臺電公司電
控會,民國78年4月。
[23] D.F. Specht, “Probabilistic Neural Network for Classification,
Mapping, or Associative Memory, ” Proc. IEEE Int. Conf.
Neural Network, San Diego, CA, Vol.1, July 1988, pp. 525-
532.
[24] K.H. Kim, J.K. Park, K.J. Hwang and S.H. Kim, “Implementation of
Hybrid Short-term Load Forecasting System Using Artificial Neural
Network and Fuzzy Expert systems ,” IEEE Trans. on Power
Systems, Vol. 10, No. 3, Aug. 1995, pp.1534-1539.
[25] A.G. Bakirtzis, J.B. Teocharis, S.J. Kiartzis and K.J. Satsios, “Short
Term Load Forecasting Using Fuzzy Neural Network ,” IEEE Trans.
on Power Systems, Vol. 10, No. 3, Aug. 1995, pp. 1518-1523.
[26] H.C. Kuo and Y.Y. Hsu, “Distribution System Load Estimation and
Service Restoration Using Fuzzy Set Approach ,” IEEE Trans. on
Power Delivery, Vol. 8, No. 4, Oct. 1993, pp. 1950-1957
[27] A. Ferrero, S. Sangiovanni and E. Zappitelli, “A Fuzzy-Set
Approach To Fault-Type Identification Digital Relaying ,” IEEE
Trans. on Power Delivery, Vol. 10, No. 1, Jan. 1995, pp. 169-175
[28] P. Jarventausta, P. Verho and J. Partanen, “Using Fuzzy Sets to
Model the Uncertainty in Fault Location Process of Distribution
Network ,” IEEE Trans. on Power Delivery, Vol. 9, No. 2, Apr.
1994, pp. 954-960
[29] 井上洋, 天笠美知夫,"模糊理論" 五南圖書出版有限公司,民國88
年。
[30] 徐揚,鄒開其,"模糊系統與專家系統" 儒林圖書有限公司,民國82年。
[31] Daniel McNeill, Paul Freiberger,"模糊邏輯",民國84年。
[32] 蒙以正," MATLAB 5 專業設計技巧 含SIMULINK, FUZZY及GUI
",民國87年。
[33] 羅華強," MATLAB5.3 SIMULINK3.0範例入門" 全華科技,民國89
年。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top