跳到主要內容

臺灣博碩士論文加值系統

(44.200.171.74) 您好!臺灣時間:2022/08/12 08:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳清發
研究生(外文):Ching-Fa Chen
論文名稱:不確定多重時間延遲線性奇異擾動系統強健穩定性之一些論點
論文名稱(外文):Some Aspects on Robust Stability of Uncertain Linear Singularly Perturbed Systems with Multiple Time Delays
指導教授:謝哲光謝哲光引用關係
指導教授(外文):Jer-Guang Hsieh
學位類別:博士
校院名稱:國立中山大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:118
中文關鍵詞:奇異擾動系統D穩定性多重時間延遲漸近穩定性
外文關鍵詞:asymptotic stabilitySingularly perturbed systemsmultiple time delaysD-stability
相關次數:
  • 被引用被引用:0
  • 點閱點閱:308
  • 評分評分:
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:0
封面
Contents
誌謝
摘要
ABSTRACT
NOMENCLATURE
CHAPTER 1 INTRODUCTION
1.1 Motivation
1.2 Brief Sketch of the Contents
CHAPTER 2 MATHEMATICAL PRELIMINARIES
CHAPTER 3 ROBUST STABILITY OF UNCERTAIN CONTINUOUS SINGULARLY PERTURBED SYSTEMS WITH MULTIPLE TIME DELAYS
3.1 Introduction
3.2 Stability for Singularly Perturbed Systems with Multiple Time Delays
3.3 Robust Stability for Uncertain Singularly Perturbed Systems with Multiple Time Delays
3.4 Stability of Nominally Stable Uncertain Singularly Perturbed Systems with Multiple Time Delays
CHAPTER 4 ROBUST STABILITY OF UNCERTAIN DISCRETE SINGULARLY PERTURBED SYSTEMS WITH MULTIPLE TIME DELAYS
4.1 Introduction
4.2 D-Stability of Uncertain Discrete Systems with Multiple Time Delays
4.3 Robust Stability of Uncertain Discrete Time-Delay Singularly Perturbed Systems with Unstructured Perturbations
4.4 Stability Bound of Uncertain Discrete Singularly Perturbed Systems with Multiple Time Delays
4.5 Robust Stability of Uncertain Discrete Time-Delay Singularly Perturbed Systems with Structured Perturbations
CHAPTER 5 CONCLUSIONS AND DISCUSSIONS
REFERENCES
[Aldh.1]Aldhaheri, R.W. and Khalil, H.K., 1996, “Effect of Unmodeled Actuator Dynamics on Output Feedback Stabilization of Nonlinear Systems,” Automatica, Vol. 32, pp. 1323—1327.
[Alek.1]Alekal, Y., Brunovsky, P., Chyung, D.H. and Lee, E.B., 1971, “The Quadratic Problem for Systems with Time Delays,” IEEE Transactions on Automatic Control, Vol. AC—16, pp. 673—687.
[Apos.1]Apostol, T.M., 1974, Mathematical Analysis, Addison-Wesley, Massachusetts, Second Edition.
[Bout.1]Boutayeb, M. and Darouach, M., 2001, “Observers for Discrete-time Systems with Multiple Delays,” IEEE Transactions on Automatic Control, Vol. AC—46, pp. 746—750.
[CBS.1]Chen, B.S. and Lin, C.L., 1990, “On the Stability Bounds of Singularly Perturbed Systems,” IEEE Transactions on Automatic Control, Vol. AC—35, pp. 1265—1270.
[CCF.1]Chen, C.F., Pan, S.T. and Hsieh, J.G., 2000, “Stabilization for a Class of Singularly Perturbed Systems with Multiple Time Delays,” Conference on Industrial Automatic Control & Power Applications, Kaohsiung, Taiwan, pp. D3-1—D3-6.
[CCF.2]Chen, C.F., Pan, S.T. and Hsieh, J.G., 2001, “Robust Stability for a Class of Uncertain Singularly Perturbed Systems with Multiple Time Delays,” JSME International Journal, Series C: Mechanical Systems, Machine Elements and Manufacturing, Vol. 44, pp. 900—906.
[CCF.3]Chen, C.F., Pan, S.T. and Hsieh, J.G., 2002, “Stability of Nominally Stable Uncertain Singularly Perturbed Systems with Multiple Time Delays,” Control and Cybernetics, to appear.
[CCF.4]Chen, C.F., Pan, S.T. and Hsieh, J.G., 2002, “D-stability Analysis for a Class of Uncertain Discrete Systems with Multiple Time Delays,” JSME International Journal, Series C: Mechanical Systems, Machine Elements and Manufacturing, to appear.
[CCF.5]Chen, C.F., Pan, S.T. and Hsieh, J.G., 2000, “Stability Bound Analysis for a Class of Uncertain Discrete Singularly Perturbed Systems with Multiple Time Delays,” Conference on Industrial Automatic Control & Power Applications, Kaohsiung, Taiwan, pp. D3-13—D3-18.
[CCF.6]Chen, C.F., Pan, S.T. and Hsieh, J.G., 2001, “Robust Stability for a Class of Uncertain Discrete Singularly Perturbed Systems with Multiple Time Delays,” Chinese Automatic Control Conference, Taoyuan, Taiwan, pp. 555—560.
[CCF.7]Chen, C.F., Pan, S.T. and Hsieh, J.G., 2002, “Stability Analysis for a Class of Uncertain Discrete Singularly Perturbed Systems with Multiple Time Delays,” ASME Journal of Dynamic Systems, Measurement, and Control, to appear.
[Chej.1]Chen, J. and Latchman, H.A., 1995, “Frequency Sweeping Tests for Stability Independent of Delay,” IEEE Transactions on Automatic Control, Vol. AC—40, pp. 1640—1645.
[Chen.1]Chen, C.C., 1998, “Global Exponential Stabilisation for Nonlinear Singularly Perturbed Systems,” IEE Proceeding D— Control Theory and Applications, Vol. 145, pp. 377—382.
[Chen.2]Chen, C.C. and Hsieh, J.G., 1994, “A Simple Criterion for Global Stabilizability of a Class of Nonlinear Singularly Perturbed Systems,” International Journal of Control, Vol. 59, pp. 583—591.
[Chen.3]Chen, C.C., 1995, “A Simple Criterion for Global Exponential Stabilizability of Nonlinear Multiple Time-delay Singularly Perturbed Systems,” International Journal of Control, Vol. 62, pp. 1197—1208.
[Chen.4]Chen, C.C., 2000, “Criterion for Global Exponential Stabilisability of a Class of Nonlinear Control Systems via an Integral Manifold Approach,” IEE Proceeding D— Control Theory and Applications, Vol. 147, pp. 330—336.
[Chio.1]Chiou, J.S., Kung, F.G. and Li, T.H.S., 1999, “An Infinity -bound Stabilization Design for a Class of Singularly Perturbed Systems,” IEEE Transactions on Circuits and Systems—I: Fundamental Theory and Applications, Vol. 46, pp. 1507—1510.
[Choi.1]Choi, H.H. and Chung, M.J., 1996, “Observer-based Controller Design for State Delayed Linear Systems,” Automatica, Vol. 32, pp. 1073—1075.
[Chou.1]Chou, J.H., 1991, “Pole-assignment Robustness in a Specific Disk,” Systems & Control Letters, Vol. 16, pp. 41—44.
[Chyu.1] Chyung, D.H. and Lee, E.B., 1966, “Linear Optimal Systems with Time Delays,” SIAM Journal of Control, Vol. 4, pp. 548—575.
[CJS.1]Cheng, J.S. and Hsieh, J.G., 1995, “Deterministic Control of Uncertain Feedback Systems with Time-delay and Series Nonlinearities,” International Journal of Systems Science, Vol. 26, pp. 691—701.
[Djem.1]Djemai, M., Barbot, J.P. and Khalil, H.K., 1999, “Digital Multirate Control for a Class of Non-linear Singularly Perturbed Systems,” International Journal of Control, Vol. 72, pp. 851—865.
[Drag.1]Dragan, V., 1996, “ -norms and Disturbance Attenuation for Systems with Fast Transients,” IEEE Transactions on Automatic Control, Vol. AC—41, pp. 747—750.
[Elkh.1]El-Khazali, R., 1998, “Variable Structure Robust Control of Uncertain Time-delay Systems,” Automatica, Vol. 34, pp. 327—332.
[Feng.1]Feng, W., 1988, “Characterization and Computation for the Bound in Linear Time-invariant Singularly Perturbed Systems,” Systems □ Control Letters, Vol. 11, pp. 195—202.
[Fili.1]Filipovic, D. and Olgac, N., 1998, “Torsional Delayed Resonator with Velocity Feedback,” IEEE Transactions on Mechatronics, Vol. 3, pp. 67—72.
[Furu.1]Furuta, K. and Kim, S.B., 1987, “Pole-assignment in a Specific Disk,” IEEE Transactions on Automatic Control, Vol. AC—32, pp. 423—427.
[Ge.1]Ge, J.H., Frank, P.M. and Lin, C.F., 1996, “Robust State Feedback Control for Linear Systems with State Delay and Parameter Uncertainty,” Automatica, Vol. 32, pp. 1183—1185.
[Ghos.1]Ghosh, R., Sen, S. and Datta, K.B., 1999, “Method for Evaluating Stability Bounds for Discrete-time Singularly Perturbed Systems,” IEE Proceeding D— Control Theory and Applications, Vol. 146, pp. 227—233.
[Gore.1]Gorecki, H., Fuksa, S., Grabowski, P. and Korytowski, A., 1989, Analysis and Synthesis of Time Delay Systems, John Wiley & Sons, Chichester.
[Hsia.1]Hsiao, F.H., Pan, S.T. and Hwang, J.D., 2000, “D-stabilization Control for Discrete-time Two-time-scale Systems,” IEEE Control Systems Magazine, Vol. 20, pp. 56—66.
[Hsia.2]Hsiao, F.H., Pan, S.T. and Teng, C.C., 1999, “An Efficient Algorithm for Finding the D-stability Bound of Discrete Singularly Perturbed Systems with Multiple Time Delays,” International Journal of Control, Vol. 72, pp. 1—17.
[Hsia.3]Hsiao, F.H., Pan, S.T. and Teng, C.C., 1997, “D-stability Bound Analysis for Discrete Multiparameter Singularly Perturbed Systems,” IEEE Transactions on Circuits and Systems—I: Fundamental Theory and Applications, Vol. 44, pp. 347—351.
[Hsia.4]Hsiao, F.H. and Hwang, J.D., 1996, “Stabilization of Nonlinear Singularly Perturbed Multiple Time-delay Systems by Dither,” ASME Journal of Dynamic Systems, Measurement, and Control, Vol. 18, pp. 176—181.
[HTC.1]Hsia, T.C., 1977, System Identification: Least-squares Methods, Lexington Books, Lexington, Massachusetts.
[John.1] John, W.D., 1967, Applied Complex Variables, Macmillan, New York.
[Kafr.1]Kafri, W.S. and Abed, E.H., 1996, “Stability Analysis of Discrete-time Singularly Perturbed Systems,” IEEE Transactions on Automatic Control, Vol. AC—43, pp. 848—850.
[Kand.1]Kando, H. and Iwazumi, T., 1986, “Multirate Digital Control Design of an Optimal Regulator via Singular Perturbation Theory,” International Journal of Control, Vol. 44, pp. 1555—1578.
[Kawa.1]Kawasaki, N. and Shimemura, E., 1988, “Pole Placement in a Specific Region Based on a Linear Quadratic Regulator,” International Journal of Control, Vol. 48, pp. 225—240.
[Kecm.1]Kecman, V., Bingulac, S. and Gajic, Z., 1999, “Eigenvector Approach for Order Reduction of Singularly Perturbed Linear-quadratic Optimal Control Problems,” Automaica, Vol. 35, pp. 151—158.
[Khal.1]Khalil, H.K., 1989, “Feedback Control of Nonstandard Singularly Perturbed Systems,” IEEE Transactions on Automatic Control, Vol. AC—34, pp. 1052—1060.
[Khal.2]Khalil, H.K., 1987, “Output Feedback Control of Linear Two-time-scale Systems,” IEEE Transactions on Automatic Control, Vol. AC—32, pp. 784—792.
[Khar.1]Kharitonov, V.L. and Zhabko, A.P., 1994, “Robust Stability of Time-delay Systems,” IEEE Transactions on Automatic Control, Vol. AC—39, pp. 2388—2397.
[Khor.1]Khorasani, K. and Kokotovic, P.V., 1986, “A Corrective Feedback Design for Nonlinear Systems with Fast Actuators,” IEEE Transactions on Automatic Control, Vol. AC—31, pp. 67—69.
[Klim.1]Klimushchev, A.I. and Krasovskii, N.N., 1962, “Uniform Asymptotic Stability of Systems of Differential Equations with Small Parameter in the Derivative Terms,” Journal of Applied Mathematics and Mechanics, Vol. 25, pp. 1011—1025.
[Koko.1]Kokotovic, P.V., Khalil, H.K. and O’Reilly, J., 1986, Singular Perturbation Methods in Control: Analysis and Design, Academic Press, New York (republished by SIAM Classics in Applied Mathematics, 1999).
[Koll.1]Kolla, S.R., Yedavalli, R.K. and Farison, J.B., 1989, “Robust Stability Bounds on Time-varying Perturbations for State-space Models of Linear Discrete-time Systems,” International Journal of Control, Vol. 50, pp. 151—159.
[LCH.1]Lee, C.H., Li, T.H.S. and Kung, F.C., 1992, “D-stability Analysis for Discrete Systems with a Time Delay,” Systems & Control Letters, Vol. 19, pp. 213—219.
[Lee.1]Lee, E.B., Lu, W.S. and Wu, N.E., 1986, “A Lyapunov Theory for Linear Time-delay Systems,” IEEE Transactions on Automatic Control, Vol. AC—31, pp. 259—261.
[Li.1]Li, T.H.S. and Li, J.H., 1992, “Stabilization Bound of Discrete Two-time-scale Systems,” Systems □ Control Letters, Vol. 18, pp. 479—489.
[Li.2] Li, T.H.S., Chiou, J.S. and Kung, F.C., 1999, “Stability Bounds of Singularly Perturbed Discrete Systems,” IEEE Transactions on Automatic Control, Vol. AC—44, pp. 1934—1938.
[Lien.1]Lien, C.H., Hsieh, J.G. and Sun, Y.J., 1998, “Robust Stabilization for a Class of Uncertain Systems with Multiple Time Delays via Linear Control,” Journal of Mathematical Analysis and Applications, Vol. 218, pp. 369—378.
[Lien.2]Lien, C.H. and Hsieh, J.G., 2000, “New Results on Global Exponential Stability of Interval Time-delay Systems,” JSME International Journal, Series C: Mechanical Systems, Machine Elements and Manufacturing, Vol. 43, pp. 306—310.
[Lien.3]Lien, C.H., Sun, Y.J. and Hsieh, J.G., 1999, “Global Stabilizability for a Class of Uncertain Systems with Multiple Time-varying Delays via Linear Control,” International Journal of Control, Vol. 72, pp. 904—910.
[Lin.1]Lin, C.L. and Chen, B.S., 1992, “On the Design of Stabilizing Controllers for Singularly Perturbed Systems,” IEEE Transactions on Automatic Control, Vol. AC—37, pp. 1828—1834.
[Liu.1]Liu, W.Q. and Sreeram, V., 1997, “A New Characterization on Stability Bounds for Singularly Perturbed Systems,” Linear Algebra and Its Applications, Vol. 263, pp. 377—388.
[LSH.1]Lee, S.H. and Lee, T.T., 1987, “Optimal Pole Assignment for a Discrete Linear Regulator with Constant Disturbances,” International Journal of Control, Vol. 45, pp. 161—168.
[LTT.1]Lee, T.T. and Lee, S.H., 1986, “Discrete Optimal Control with Eigenvalues inside a Circular Region,” IEEE Transactions on Automatic Control, Vol. AC—31, pp. 958—962.
[Luo.1]Luo, J.S. and Van Den Bosch, P.P.J., 1997, “Independent of Delay Stability Criteria for Uncertain Linear State Space Models,” Automatica, Vol. 33, pp. 171—179.
[Mahm.1]Mahmoud, M.S. and Mohamed, Z., 2000, “Output Feedback Stabilization of Systems with Non-linear Actuators,” International Journal of Control, Vol. 73, pp. 187—196.
[Mahm.2]Mahmoud, M.S., 1982, “Order Reduction and Control of Discrete Systems,” IEE Proceeding D— Control Theory and Applications, Vol. 129, pp. 129—135.
[Naid.1]Naidu, D.S. and Rao, A.K., 1985, Singular Perturbation Analysis of Discrete Control Systems, Springer-Verlag, Berlin.
[Olga.1]Olgac, N. and Elmali, H., 2000, “Analysis and Design of Delayed Resonator in Discrete Domain,” Journal of Vibration and Control, Vol. 6, pp. 273—289.
[Ouch.1]Oucheriah, S., 1995, “Dynamic Compensation of Uncertain Time-delay Systems Using Variable Structurre Approach,” IEEE Transactions on Circuits and Systems—I: Fundamental Theory and Applications, Vol. 42, pp. 466—470.
[Ouch.2]Oucheriah, S., 1999, “Adaptive Control of a Class of Uncertain Dynamic Delay Systems,” ASME Journal of Dynamic Systems, Measurement, and Control, Vol. 121, pp. 538—541.
[Pan.1]Pan, S.T., Hsiao, F.H. and Hsiau, L.G., 1998, “Composite Feedback Control of Discrete Multiparameter Singularly Perturbed Systems,” International Journal of Control, Vol. 69, pp. 577—597.
[Pan.2]Pan, S.T., Hsiao, F.H. and Teng, C.C., 1996, “Stability Bound of Multiple Time Delay Singularly Perturbed Systems,” Electronics Letters, Vol. 32, pp. 1327—1328.
[Pan.3]Pan, S.T., 1996, The Stability Analysis and Control Design for Multiple Time-delay Singularly Perturbed Systems, Ph.D. Dissertation, National Chiao-Tung University, Hsinchu, Taiwan.
[Phoo.1] Phoojaruenchanachai, S., Uahchinkul, K., and Prempraneerach, Y., 1998, “Robust Stabilisation of a State Delayed System,” IEE Proceeding D—Control Theory and Applications, Vol. 145, pp. 87—91.
[Rach.1] Rachid, A., 1989, “Robustness of Discrete Systems under Structured Uncertainties,” International Journal of Control, Vol. 50, pp. 1563—1566.
[Rach.2] Rachid, A., 1990, “Robustness of Pole Assignment in a Specific Region for Perturbed Systems,” International Journal of Systems Science, Vol. 21, pp. 579—585.
[Ross.1] Ross, D.W. and Flugge-Lotz, I., 1969, “An Optimal Control Problem for Systems with Differential-difference Equation Dynamics,” SIAM Journal of Control, Vol. 7, pp. 609—623.
[Sayd.1] Sayda, L., 1996, “New Stability/Performance Results for Singularly Perturbed Systems,” Automatica, Vol. 32, pp. 807—818.
[Shao.1]Shao, Z.H. and Sawan, M.E., 1993, “Robust Stability of Singularly Perturbed Systems,” International Journal of Control, Vol. 58, pp. 1469—1476.
[Shao.2]Shao, Z. and Rowland, J.R. 1995, “Stability of Time-delay Singularly Perturbed Systems,” IEE Proceeding D— Control Theory and Applications Vol. 142, pp. 111—113.
[Shar.1]Sharkey, P.M. and O’Reilly, J., 1987, “Exact Design Manifold Control of a Class of Nonlinear Singularly Perturbed Systems,” IEEE Transactions on Automatic Control, Vol. AC—32, pp. 933—935.
[Shar.2]Sharkey, P.M. and O’Reilly, J., 1988, “Composite Control of Non-linear Singularly Perturbed Systems: a Geometric Approach,” International Journal of Control, Vol. 48, pp. 2491—2506.
[Shi.1]Shi, P., Shue, S.P. and Agarwal, R.K., 1998, “Robust Disturbance Attenuation with Stability for a Class of Uncertain Singularly Perturbed Systems,” International Journal of Control, Vol. 70, pp. 873—891.
[Shi.2]Shi, P. and Dragan, V., 1999, “Asymptotic Control of Singularly Perturbed Systems with Parametric Uncertainties,” IEEE Transactions on Automatic Control, Vol. AC—44, pp. 1738—1742.
[Shou.1]Shouse, K.R. and Taylor, D.G., 1995, “Discrete-time Observers for Singularly Perturbed Continuous-time Systems,” IEEE Transactions on Automatic Control, Vol. AC—40, pp. 224—235.
[Souz.1] Souza, C.E.D. and Li, X., 1999, “Delay-dependent Robust Control of Uncertain Linear State-delayed Systems,” Automatica, Vol. 35, pp. 1313—1321.
[Step.1]Stepan, G., 1989, Retarded Dynamical Systems, Longman, London.
[Step.2]Stepan, G., Enikov, E. and Muller, T., 1997, “Nonlinear Dynamics of Computer Controlled Machines,” Proceedings of 11th CISM-IFTOMM Symposium on Theory and Practice of Robots and Manipulators, pp. 81—88, Springer, Berlin.
[STJ.1]Su, T.J. and Shyr, W.J., 1994, “Robust D-stability for Linear Uncertain Discrete Time-delay Systems,” IEEE Transactions on Automatic Control, Vol. AC—39, pp. 425—428.
[Su.1]Su, J.P. and Hsieh, J.G., 1990, “Composite Feedback Control for a Class of Non-linear Singularly Perturbed Systems with Fast Actuators,” International Journal of Control, Vol. 52, pp. 571—579.
[Sun.1]Sun, Y.J., Hsieh, J.G. and Hsieh, Y.C., 1996, “Exponential Stability Criterion for Uncertain Retarded Systems with Multiple Time-varying Delays,” Journal of Mathematical Analysis and Applications, Vol. 201, pp. 430—446.
[Sun.2]Sun, Y.J., Hsieh, J.G. and Yang, H.C., 1997, “On the Stability of Uncertain Systems with Multiple Time-varying Delays,” IEEE Transactions on Automatic Control, Vol. AC—42, pp. 101—105.
[Sun.3]Sun, Y.J., Cheng, J.S., Hsieh, J.G. and Chen, C.C., 1996, “Feedback Control of a Class of Nonlinear Singularly Perturbed Systems with Time Delays,” International Journal of Systems Science, Vol. 27, pp. 589—596.
[Sun.4]Sun, Y.J., Lee, C.T. and Hsieh, J.G., 1997, “Sufficient Conditions for the Stability of Interval Systems with Multiple Time-varying Delays,” Journal of Mathematical Analysis and Applications, Vol. 207, pp. 29—44.
[Sun.5]Sun, Y.J. and Hsieh, J.G., 1998, “Robust Stabilization for a Class of Uncertain Nonlinear Systems with Time-varying Delay: Razumikhin-type Approach,” Journal of Optimization Theory and Applications, Vol. 98, pp. 161—173.
[SWC.2]Su, W.C., Gajic, Z. and Shen, X.M., 1992, “The Exact Slow-fast Decomposition of the Algebraic Riccati Equation of Singularly Perturbed Systems,” IEEE Transactions on Automatic Control, Vol. AC—37, pp. 1456—1459.
[Tan.1]Tan, W., Leung, T.P. and Tu, Q.L., 1998, “ Control for Singularly Perturbed Systems,” Automatica, Vol. 34, pp. 255—260.
[Trin.1]Trinh, H. and Aldeen, M., 1995, “Robust Stability of Singularly Perturbed Discrete-delay Systems,” IEEE Transactions on Automatic Control, Vol. AC—40, pp. 1620—1623.
[Uchi.1]Uchida, K. and Shimemura, E., 1986, “Closed-loop properties of the Infinite-time Linear-quadratic Optimal Regulator for Systems with Delays,” International Journal of Control, Vol. 43, pp. 773—779.
[Uchi.2]Uchida, K., Shimemura, E. and Abe, N., 1987, “Circle Condition and Stability Margin of the Optimal Regulator for Systems with Delays,” International Journal of Control, Vol. 46, pp. 1203—1212.
[Uchi.3]Uchida, K., Shimemura, E., Kubo, T. and Abe, N., 1988, “The Linear-quadratic Optimal Control Approach to Feedback Control Design for Systems with Delay,” Automatica, Vol. 24, pp. 773—780.
[Vici.1]Vicino, A., 1989, “Robustness of Pole Location in Perturbed Systems,” Automatica, Vol. 25, pp. 109—113.
[Vidy.1] Vidyasagar, M., 1985, Control System Synthesis, MIT Press, Cambridge.
[Wang.1]Wang, W.J. and Mau, L.G., 1997, “Stabilization and Estimation for Perturbed Discrete Time-delay Large-scale Systems,” IEEE Transactions on Automatic Control, Vol. AC—42, pp. 1277—1282.
[WYY.1]Wang, Y.Y. and Frank, P.M., 1992, “Complete Decomposition of Sub-optimal Regulators for Singularly Perturbed Systems,” International Journal of Control, Vol. 55, pp. 49—60.
[WYY.2]Wang, Y.Y., Frank, P.M. and Wu, N.E., 1994, “Near-optimal Control of Nonstandard Singularly Perturbed Systems,” Automatica, Vol. 30, pp. 277—292.
[WZ.1]Wang, Z., Huang, B. and Unbehauen, H., 1999, “Robust Reliable Control for a Class of Uncertain Nonlinear State-delayed Systems,” Automatica, Vol. 35, pp. 955—963.
[Wu.1]Xu, H., Mukaidani, H. and Mizukami, K., 1997, “New Method for Composite Optimal Control of Singularly Perturbed Systems,” International Journal of Systems Science, Vol. 28, pp. 161—172.
[Yaz.1]Yaz, E. and Niu, X., 1989, “Stability Robustness of Linear Discrete-time Systems in the Presence of Uncertainty,” International Journal of Control,
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top