跳到主要內容

臺灣博碩士論文加值系統

(3.229.117.123) 您好!臺灣時間:2022/08/12 18:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳俐蓉
研究生(外文):Li-Rung Chen
論文名稱:小型電磁相容電波暗室之正規化場傳遞損耗的量測與模擬
論文名稱(外文):Simulation and Measurement of the Normalized Site Transmission Loss of the Compact EMC Chamber
指導教授:吳宗霖吳宗霖引用關係
指導教授(外文):Tzong-Lin Wu
學位類別:碩士
校院名稱:國立中山大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:80
中文關鍵詞:時域有限差分小型電磁相容電波暗室正規化場傳遞損耗
外文關鍵詞:Normalized Site Transmission LossFinite-Difference Time-DomainCompact EMC Chamber
相關次數:
  • 被引用被引用:6
  • 點閱點閱:341
  • 評分評分:
  • 下載下載:98
  • 收藏至我的研究室書目清單書目收藏:2
小型全電波暗室已有逐漸取代開放測試場地做為電磁輻射量測場地的趨勢。本篇論文主要是研究在地板上部分舖電波吸收體的全電波暗室場地中量測環境特性是否像在一個自由空間條件下的測試環境,並藉由理論分析與實驗結果去探討在地板上部分舖電波吸收體的全電波暗室場地在頻段300MHz以下的適用性。結果顯示,對於天線在垂直極化而言,地板上部分舖電波吸收體的全電波暗室場地比較像在自由空間測試場地的特性。然而,對於天線在水平極化而言,地板上部分舖電波吸收體的全電波暗室場地特性有較大的影響,也比較不像在自由空間測試場地的特性。
藉由FDTD數值模擬方法,以及可調諧偶極天線數值模擬結構的建立,可去模擬與探討亞鐵鹽磚電波吸收體在全電波暗室中,不同設計配置時的NSTL模擬值。進一步,有幾種在全電波暗室內減少亞鐵鹽磚電波吸收體數目的設計結構已被提出與討論。
此外,本篇論文也探討3m量測距離的全電波暗室與10m量測距離的半電波暗室兩場地之間的相關性量測,量測頻段為80MHz到1000MHz之間。藉由兩個場地之間的校正因子,量測頻段從200MHz到900MHz之間,EUT在10m半電波暗室的EMI行為表現可迅速被預測得知。因此,若EUT的EMI程度的預測值與實際在10m半電波暗室中量測到的特性越一致,則3m全電波暗室可期望成為低成本的先期量測場地。
Compact fully anechoic chambers may gradually replace open area test sites as the preferred type of testing facility for the measurement of radiated emissions. This dissertation theoretically and experimentally investigates the suitability of a compact fully anechoic chamber with ferrite tiles being partially lined on the floor ground as a free-space environment at frequency range below 300MHz. The results show that, for vertical polarization, the practical chamber will behave like a free-space test site. However, for the horizontal polarization, it seems have relatively significant effect on the NSTL performance and will not behave well like a free-space test site.
Based on FDTD modeling approach, a numerical tool with the measuring tunable dipole antennas being considered is established to simulate the NSTL performance of the compact EMC chamber with different layout design of ferrite tiles. Furthermore, several designs of reduced coverage of the ferrite tiles in the compact chamber are proposed and discussed.
In addition, this dissertation also investigates the correlation test of a 3m fully anechoic chamber (FAC) and a 10m semi-anechoic chamber (SAC) at frequency range from 80MHz to 1000MHz. Based on correction factor between two test sites, the EMI behaviors of the EUT in a 10m SAC could be predicted rapidly at frequency from 200MHz to 900MHz. Thus, a 3m FAC has been expected to provide a low cost as a pre-compliance test site, if the predicted EMI behaviors of the EUT are close to the practical measured results in a 10m SAC.
誌謝∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙I
論文提要∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙II
目錄∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙V
圖表目錄∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙VII
第一章序論∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙1
1.1研究背景∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙1
1.2研究目的∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙2
1.3論文大綱∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙3
第二章10m半電波暗室之正規化場衰減量理論與量測4
2.1正規化場衰減量標準值之演進∙∙∙∙∙∙∙∙∙∙∙∙∙4
2.2正規化場衰減量之標準值∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙4
2.2.1 自由空間的遠場電場表示式∙∙∙∙∙∙∙∙∙∙∙∙∙∙5
2.2.2 NSA標準值之表示式∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙11
2.3正規化場衰減量之量測∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙13
2.4大同檢測公司10m半電波暗室之正規化場衰減量之量測過程及結果∙15
第三章3m全電波暗室之正規化場傳遞損耗量理論與量測∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙22
3.1正規化場傳遞損耗量之標準值∙∙∙∙∙∙∙∙∙∙∙∙22
3.1.1 自由空間的Friis傳輸方程式∙∙∙∙∙∙∙∙∙∙∙∙22
3.1.2 NSTL標準值之表示式∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙23
3.2正規化場傳遞損耗量之量測∙∙∙∙∙∙∙∙∙∙∙∙∙∙25
3.2.1 NSTL量測值之表示式∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙25
3.2.2 NSTL之測量方法∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙25
3.3正規化場傳遞損耗量之量測結果∙∙∙∙∙∙∙∙∙∙27
第四章全電波暗室特性之數值分析及最佳化設計∙∙36
4.1FDTD模擬方法∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙36
4.1.1 FDTD模擬結構∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙36
4.1.2 半波長偶極天線之模擬結構∙∙∙∙∙∙∙∙∙∙∙∙∙37
4.1.3 NSTL模擬值之計算∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙45
4.2NSTL模擬與量測結果之比較分析∙∙∙∙∙∙∙∙∙∙46
4.3全電波暗室之最佳化設計∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙50
4.4結論與討論∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙58
第五章3m全電波暗室與10m半電波暗室之轉換關係∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙59
5.1場地之間的校正因子∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙59
5.210m半電波暗室場強之預測∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙65
5.3討論∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙77
第六章結論∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙78
參考文獻∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙79
[1] A. A. Smith, R. F. German, and J. B. Pate, “Calculation of Site Attenuation From Antenna Factors,” IEEE Trans. on Electromagnetic Compatibility, vol. EMC-24, No. 3, pp. 301-316, August 1982.
[2] Clayton R. Paul, “Introduction to Electromagnetic Compatibility,” A Wiley-Interscience Publication, 1992.
[3] V. Prasad Kodali, “Engineering Electromagnetic Compatibility:Principles, Measurements, and Technologies,” IEEE EMC Society, 1996.
[4] ANSI C63.4, “American National Standard:Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electric and Electronic Equipment in the Range of 9kHz to 40GHz,” 2001.
[5] Xiao Li, “The Evaluation for Emission Measurements above 1 GHz,” Asia-Pacific Conference, 2000.
[6] J. Haala, W. Wiesbeck, “Upgrade of Foam Equipped Semi Anechoic Chambers to Fully Anechoic Chambers by the Use of Ferrite Tiles,” IEEE International Symposium on EMC, vol. 1, pp. 14-19, 1998.
[7] ETR 273-2: “Electromagnetic compatibility and Radio spectrum Matters (ERM); Improvement of radiated methods of measurement (using test sites) and evaluation of the corresponding measurement uncertainties; Part 2: Anechoic chamber,” 1998.
[8] C. L. Holloway, P. McKenna, D. A. Steffen, “Finite-Difference Time-Domain Modeling for Field Predictions Inside Rooms,” Proceedings of the IEEE International Symposium on EMC, pp. 60-65, 1997.
[9] A. Taflove, “Computational Electrodynamics: The Finite-Difference Time-Domain Method,” Artech House, 1995.
[10] A. Taflove, K. R. Umashankar, B. Beker, F. Harfoush, and K. S. Yee, “Detailed FD-TD Analysis of Electromagnetic Fields Penetrating Narrow Slots and Lapped Joints in Thick Conducting Screens,” IEEE Trans. Antennas and propagation, vol. 36, pp. 247-256, 1988.
[11] S. Watanabe, M. Taki, “An Improved FDTD Model for the Feeding Gap of a Thin-Wire Antenna,” IEEE Microwave and Guided Wave Letters, vol. 8, pp. 152-154, April 1998.
[12] W. L. Stutzman, G. A. Thiele, “Antenna Theory and Design,” New York:Wiley, 1981.
[13] L. Dawson, J. F. Dawson, A. C. Marvin, D. Welsh, “The Use of TLM Modelling to Predict the Performance of Ferrite Tiles in Damping Resonances Within a Screened Enclosure,” IEEE International Symposium on EMC, vol. 2, pp. 867-872, 1999.
[14] L. Dawson, J. F. Dawson, A. C. Marvin, D. Welsh, “Damping Resonances Within a Screened Enclosure,” IEEE Transactions on EMC, vol. 43, issue: 1, pp. 45-55, Feb. 2001.
[15] J. Clegg, M. Alexander, L. Dawson, J. F. Dawson, J. Jee, A. C. Marvin, B. Loader, S. J. Porter, “A Method of Reducing the Number of Ferrite Tiles in an Absorber Lined Chamber,” International Conference and Exhibition on EMC York 99. (Conf. Publ. No. 464), pp. 59-64, 1999.
[16] J. Welinder, W. Mullner, D. Festa, P. Philips, P. A. Beeckman, H. Klamm, E. Rodriguez, “Development of New Measurement Methods of the EMC Characteristics in Smaller Relatively Inexpensive Fully Anechoic Rooms,” FAR Project Final Report SMT4-CT96-2133, 2001.
[17] R. A. McConnell; C. Vitek, “Calibration of Fully Anechoic Rooms and Correlation with OATS Measurements,” IEEE International Symposium on EMC, pp. 134-139, 1996.
[18] F. B. J. Leferink, D. J. Groot-Boerle, B. R. M. Puylaert, “OATS Emission Data Compared with Free Space Emission Data,” IEEE International Symposium on EMC, pp. 333-337, 1995.
[19] K. Osabe; T. Komatsuzaki, K. Tamara, “Correlation Test Among EMI Measurement Sites Using A Comb Generator,” IEEE International Symposium on EMC, vol. 2, pp. 945-948, 2000.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top